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1 January 6th

We study differential and integral calculus of complex functions of complex
variables.
Replace R with C.

e C=R?={(z,y)|x,y € R}
xtiy = (x,y)

This necessarily involves calculus of functions of two real variables.

The results will be much richer and deeper when we define complex differentia-
bility.

We will see that notions like regularity, and analyticity are very different this
time.

We will see a ”unification” of close relationship of exponential and trigonometric,
hyperbolic functions.

We will see that questions of real variable calculus can be answered by passing
through the complex domain.

We will see close relationship between complex differentiable functions and har-
monic functions in two variables. (We will start here)

Prereq: Previous exposure to real analysis also multivariable calculus.

It includes:

e Double integrals,
e Partial derivative,

e Directional derivative,

Gradient,

e Chain rule.



1.1 Topology of R?
R? = {(z,y)|z,y € R*}

is two-dimentional real vector space.
Dot product also called Euclidean inner product.

z21 = (96173/1)

22 = (CU273J2)
Z1 22 = X122 + Y192

2= (2,y)
2P =z-z2=2+¢y*>0

with equality when z = (0, 0)

2] = V(2 +y?)
Distance from 0 to z.
Cauchy-Schwarz Inequality

|2 w] <[z - wl

with equality when z,w are linearly dependent.

Pictures here.

Distance from zq to z is |z — 20| = /(z — 70)% + (y — ¥0)?
Triangle Inequality

[z —w| <[z —ul + Ju—wl

Pictures here.
Define: Let 29 = (79,%0) € R?. Let € > 0.

D(z0;¢) = {2 € R?: |z — 29| < €}

called the open disc of radius € centered at zg.
Define:

D(zp;5¢) = {2 €R? : |z — 29| < €}

closed disc of radius € centered at zq

Define:

Let Q C R? be a subset.

Let z € Q.

We say z is an interior point of € if Je > 0 such that D(z;¢) C Q
Define:

Q) C R? is an open set if every point in € is an interior point of €.
Remarks:



1. 0 is open.
2. R? is open.
3. An open disc is an open set.

4. A closed disc is not an open set.

Example:

Q= D(z05¢) \ {20}

is called a punctured disc.
Facts: (Exercise)

1. If Q1,Q9 are open = 1 N Qs is open.

Hence any finite intersection of open sets is open.

2. If Q, is open Va € A, then | U, is open. (A can be uncountable.)

acA

Connectedness

Definition from Topology by Munkres:

Let X be a topological space. A separation of X is a pair U,V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be
connected if there does not exist a separation of X.

Another way of formulating the definition of connectedness is the following;:

A space X is connected if and only if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Definition:

Let E C R?.

We say that E is disconnected if 3 open sets (q,Qy C R? such that E N Qy #
0,ENQy #0.

EnOinNQy =10

E=(En)U(ENQ)

Informally, E is disconnected if it is made up of more than one piece”.

We say E is connected if it is not disconnected.

Fundamental Fact:

Let f: E — R be continuous on FE.

If E is connected, then f(E) = {f(z):z € E} is an interval.

Corrolary: Intermediate Value Theorem.

Suppose f: E — R is continuous on E and FE is connected.

Let 21,20 € F.

Let f(Zl) = tl, f(Zg) = 1s.

Vt between t1,t, 32 € E such that f(z) =t.

Define:

A domain Q in R? is an non-empty open connected set.

Theorem:

Let Q C R? be open (non-empty) then TFAE



1. Q is connected

2. Any pair of points in 2 can be linked by a path made of a finite number
of straight line segments each lying entirely in {2

Equivalence!!!

Proof:

Let zg € Q.

We want to show S = Q.

Claim: S is open.

Let z€ S. Since S C Q,z € Q.

Q is open, so Je > 0 such that D(z,¢) C Q.

Hence for any w € D(z : €), 3 a straight line from z to w.
So 3 a piecewise linear path from zy to w.

Sow € S.

Hence D(z,¢e) C S.

S is open.

Claim:

Q\ S is open suppose w € Q\ S.

Since w € Q, and  is open, Je > 0 such that D(w,¢) C Q.
If D(w,e) NS # (), then 3 piecewise linear path from zy to a point in D(w,€)
and hence to w, contradicting w ¢ S.

Hence, D(w,e) N S = 0.

So D(w,e) CQ\ S.

Hence Q\ S is open.

E:Q.

Q1 = S open.

Q3 =0\ S is open.

M NE=S#0.

QW NE=0\S5.

E=0Q=0;UQ,.

But 2 is connected.

So at least one of 21, )5 empty.

But S#0. SoQ\S=0=Q=25.

This proves (1) = (2).

(2) = (1) (Sketch)

Suppose (2) holds but € is not connected.

Let Q4, Qs be a disconnection of €.

Ql n QQ - @

Q=0 U0

09,09 # 0.

dz € Ql, w € Q.

2 = 3 piecewise linear path from z to w. « : [0,1] — R? continuous, a(0) =
z,a(l) = w.

= «([0,1]) is connected.



2 January 8th

Continue from last time.

Assume 2 holds, but € is not connected. Then, 3 open subsets Q;, Qs of R?
such that 75 (Z),QQ 75 @,Ql NQy = (Z),Q = UQy

Picture here.

3 a piecewise linear path from z; to zo lying entirely in €.

Hence, 3 a continuous map, « : [0,1] — R? such that «(t) € QVvt € [0,1]

and «(0) = z1, (1) = 2.

E = «a([0,1]) is connected subset of R2.

EOQ1¢®,EQQQ¢®,E091QQQZQ

Hence, 1, Qs give a disconnection of F.

Contradiction

So Qis connected.

Recall

A domain is a connected open subsets of R2.

Corollary:

We have lots of domains.

Examples:

Any open convex set is a domain.

Hence, an open disc D(z;¢€) is a domain.

A punctured open disc D(z;¢€) \ {2z} is a domain.

An annulus, {z € R?, Ry < |z — 29| < Ry} for Ry > Ry > 0 is a domain.
Boundedness

Definition:

A subset E of R? (need not be open) is called bounded if 3 R > 0 such that

EC D(0;R)
(The location of the disc is irrelevant) Example:
|z| <R, Vze E

(A bounded set doesn’t ”go off to infinity”)
Definition:

E C R? is called closed if R? \ E is open.

= arbitrary intersections of closed sets are closed.
= finite unions of closed sets are closed.

In general a subset need not be open nor closed.
Definition:

E C R? is compact if it is closed and bounded.
(Heine-Borel Theorem)

Fundamental Fact:

The continuous image of a compact set is compact.
Corollary:



Extreme Value Theorem

Let f : E C R?> = R be continuous on E and suppose E is conpact. Then f
attains a global max and global min on F

Example:

21,29 € E such that f(z1) < f(2) < f(22)Vz € E

Boundary of a set

Definition:

Let E be a subset of R2.

A point z € R? is called a boundary point of E iff

Ve > 0, both D(z;¢) N E # () and D(z;¢) N (R?\ E) # 0

(i.e z is a boundary point of E iff any open neighbourhood of z contains both
points in E and points not in E)

Example:

E = D(w;r)

The boundary points of E are the points z € R? such that |z — w| =r

None of the boundary points are in the set.

DW;r)={z€R? |z —w| <7}

The boundary points of this set are the same as the previous example.
All the boundary points are in the set.

Picture here.

Some of the boundary points are in the set.

Clear:

A subset F is

1. Open iff it contains non of its boundary points
2. Closed iff it contains all of its boundary points

Definition:

OF = {z € R? : z is a boundary point of F}

is called the (topological) boundary of E.
Notice:
OE =0 (R*\ E)

Boundary has nothing to do with boundedness.
Example:

Q={(z,y) eR*:y >0}
”The upper half plane”

0N ={(z,0) : z € R}

T - axis.



But is not bounded.

Curves in R?

Definition:

A smooth curve in R? is a map

a:[a,b] — R?
such that
a(t) = (a1 (t), az(t))
1. ais C! or [a,b] (continuously differentiable)
ie
a1 :[a,b] 2 Ras i [a,b] = R

are continuous differentiable and their derivatives o}, oy are continuous
on [a,b]

(Use one-sided limits at end points)
2. a/(t) = (ay(b), a5(t)) # (0,0)Vt € [a, D]

o/(t) is called the velocity vector of the curve o at a(t)

Example:
a(t) = (Rcos(t), Rsin(t)),t € [0,27], R > 0
o' (t) = (—Rsin(t), Rcos(t))
la'(t)) =R >0
~(t) = (xo + Rcost,yo + Rsint)
= circle of radius R centered at (zo,yo)
Example:

a(t) = (Rcos(2r —t), Rsin(2r — t)),0 < ¢ < 27
”Opposite direction”

Example:

a(t) = (Rcost, Rsint),t € [0, 4]

”Same” as example 1, but travels aroudn the image twice.
So it is a different curve.

Example:

a(t) = (Rcos(2t), Rsin(2t)),0 <t <

Same image as all the others, same ”orientation” as the examples 1, 3. Only
goes around once like example 1.

But it goes around twice as fast.

So, it is a different curve.

We need a slight generalization!

Definition:



A piecewise-smooth curve in R? is a continuous map « : [a,b] — R? and a
decomposition a = tg < t; < --- < ty_1 < ty = b such that a; := «
[ti,tiy1] — R? is a smooth curve Vi = 0,1,..., N > 1

Note:

Continuity says

[ti,tiga]s

@;(tiv1) = ig1(tiv1)

From now on, a curve means a piecewise-smooth curve.
Definition:

A curve, a: [a,b] — R? is called simple is @|(q,p) is one-to-one.
i.e a(t;) # a(ta) except possibly for t; = a,to = b

(Example 3 where we traverse the circle twice is not simple.)
Definition:

a: [a,b] = R? is called closed if a(a) = a(b).

(final point equals initial point)

Examples:

Pictures here.
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Length of a (piecewise smooth) curve
Let « be a curve,
ala,b] — R?

Define:
The length of « is

b
L(a) = / o/ (1)) dt

« is continuous. L(a) > 0 since |/ (t)| > 0, V¢ € [a, b]

Example:
at) = (Rcost, Rsint) ,0 <t < 2r
o'(t) = (—Rsint, Rcost)
o' (t)| = R
2w
La)= [ Rdt=2rR
0

Definhition:

A reparametrization of a curve « : [a,b] — R? is a bijective continuous map
h: [e,d] — [a,b] such that

1. h is piecewise-smooth



9 either t="h'(s) >0Vs €lc,d] Orientation (direction) preserving
t="h(s) <0Vs€lcd Orientation reversing
So that & : [¢,d] — R? by
a(s) = a(h(s)), Vs € [c,d]

then

@ : [e,d] — R? is a piecewise-smooth curve whose image is the same as o and
that passes through each point in the image the same number of times as « and
in

1. (2a) Same direction
2. (2b) Opposite direction
Chain Rule:

SO @ is picewise smooth.

1. h(c) =a,h(d)=b
2. h(c)=b,h(d) =a
Picture here.
Proposition:
Let a(s) = a(h(s)) be a reparametrization of «, then L(&) = L(«)
t = h(s)
Proof:

& (s) = o (h(s)) I (s)
@ (5)] = o’ (h(s)) 11 (s)]



= L(«a)
d
=)~ [ i) ds
b
— [ a
= L(a)

Theorem:

Reparametrization by arclength

Let o : [a,b] — R? be a curve. Let L = L(a) > 0
31 orientation preserving reparametrization

h:[0,L] = [a,b](h'(s) > 0,Vs € [0, L])
such that & = « - h has unit speed
|&'(s)] =1Vs €0, L]
Suppose we had this

Sp € [O,L]
S0

S0
/ |&/(s)| ds = length of &l s0) = / 1ds = s
0 0

So sg € [0, L] is the length of &(0) = a(a) to a(se) = a(h(sp)).
Proof:
First, suppose « is smooth, let L = L(a) = f: |/ (#)| dt
We seek a function
h:[0,L] — [0,]

bijection such that

a(s) = a(h(s))

has unit speed.

10



Length of the curve from a(0) = a(0) to a&(s) = af(t) = a(t)
f=h"1:]a,b] = [0,L]
Hence

£ = [ lo'(w)] du

fla) =0
f(b) = L = Length(«)

Note: |&/(u)] is continuous.
So by Fundamental Theorem of Calculus, f(t) is differentiable.

f't) =1/ (t)] > 0,V € [a,b]

So by Calculus I,
There exists an inverse function h = f~1 such that f(h(s)) = s,Vs (Differen-
tiable with respect to s).

f'(h(s))'(s) =1

and h is C! on [a, b].
Set a(s) = a(h(s)).

Hence |&/(s)| = 1,Vs
We have proved it for smooth curves.
Suppose « is piecewise smooth

a=tg<ti1 <ty < - <tp_1 <tny=0b

Q= Qf[t; t541]

is smooth ¢ =0,...,N —1

11



Let h; be the ”h” for a; define h by

h(s) = ho(s),0 < s < L(ag)
= L(ag) + h1(s), L(ag) < s < L) + L(ay)

etc.
Exercise:

a(t) = (Rcost, Rsint),t € [0, 2]

We want to reparametrize by arclength
t
s= f(t) :/ |/ (u)| du = Rt
0
S

t=

R
a(s) = (Rcos (%) , Rsin (%))
0<s<27R

From now on we can WLOG assume that any curve is paramerized by arclength.
Define:

A Jordan curve is a curve « : [a,b] — R? that is simple and closed. t; <
to, a(t1) # a(ta), ala) = a(b)

Theorem:

Jordan curve Theroem

Let a : [a,b] — R? be a Jordan curve with image I' = « ([a, b]).

Then R? \ T consists of two disjoint domains.

One of which is bounded (called ”inside”) and the other is unbounded (called
"outside”). Each domain has I' as its boundary.

If a point inside T" is joined to a point outside I' by a curve, then that curve
must intersect I'.

We won’t prove this. It is intuitively clear but requires some algebraic topology
to prove. (PMATH 365)

Definition:

Jordan Domain

A Jordan domain is a bounded domain (open + connected) € such that its
boundary is the union of finitely many images of Jordan curves.

We choose to orient each of these Jordan curves so that as we traverse the curve
in the direction of its orientation, the Jordan domain € lies on left side.
Picture here.

0-connected

1-connected

3-connected

12
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Outward normal vector field N to a curve

Let © be a Jordan domain with boundary 9f.

Let T" be one of the Jordan curves in 92, without loss of generality, let I' be
paramerized by arclength.

a(s) = (a1(s),aa(s)),s € [0, L], L = Length(«)

T(s) = d'(s)
= (c/(s), a5(s))

= unit tangent vector field to «

Definition:
The outward unit normal vector field N to « is defined to be

N(s) = (ay(s), =i (s))

IN(s)| = 1,¥s € [0, ]

By our choice, N is pointing outward at all points on .

Examples:
a(s) = (Rcos (%),Rsin(%)),0<s<27R
T(s) = a/(s) = (=sin () ,cos ()

N(s) = (cos (%) ,sin %)

Picture example.

Read 1.3 on your own.

The outward normal derivative

Let Q be the Jordan domain, let zy € 0€).

Let N(zp) be the outward pointing unit normal vector.
Picture here.

Let W be an open set in R%. Such that

WCQuUIN=0

Let u € CY(W),u- W C R? — R, continuously differentiable, u,,u, € C*(W).
Definition:

O (20) = Dviegyt = (V) (20) - N(z0)

D (zyu: Directional derivative of u at zp in N(zp) direction.
Example: Assignment 1
If a(s) = (Rcos (§) , Rsin &)

13



Then:
ou ou

%(ZO) = E(ZO)

Picture here.

This is the partial derivative of u at zy with the polar coordinates 7.
The Laplacian Let W C R? be open.

Let u € C*(W).

0
Ugg, Ugy = Uyg, Uyy € C° (W)

Then we define the Laplacian of u, denoted Au, by
Au = Uyy + Uy, € CO(W)

Define: u € C?(W) is called harmonic on W if Au =0 on W.

In Chapter 2, we will see harmonic functions have very nice properties and
closely related to complex analysis.

1.4.1 Line integrals of vector fields

Define:

Let © C R? be open.

A vector field F on Omega is a map

F:QCR? 5 R?

F(z,y) = (P(x,y),Q(x,y))
PQ:QCR?*->R

We say F is a CF vector field on Q iff both P,Q € C*(Q).
We always assume F is at least C° vector field.
Exercise 1

F(:L}y) = (_yvi)

Q=R2
Exercise 2

T,y) = < Y =R?
G(z,y) <\/x2+y2’\/x2+y2>’ﬂ RZ\{(0,0)}

Let « : [0,h] — R? be a curve in R? suppose I'm(a) C .
Let F be a C° vector field on Q.
a(t) = (a(t), az(t)) = (2(t),y(t)),a <t <b

Let a : [a,b] — R? be a curve in R?. Suppose Im(a) C €.
Let F be a C° vector field on Q.
Definition:

14



The line integral of the vector field F' along the curve « is defined to be

b b b
/F-dr :z/ F(a(t))-o(t) dt:/ P(x(t),y(t)x' (t) dt—l—/ Qx(t),y(t))y' (t) dt

Notation:
The authour writes

/a(Pdm + Qdy)

Examples:

a(t) = (Rcos(t), Rsin(¢)),0 <t < 27
/F-dT

F(a(t)) = (—Rsint, Rcost)
o'(t) = (—Rsint, Rcost)
F(a(t))-o/(t) = R?

See pictures.

G(a(t)) = (cos(t),sin(t))
o/(t) = (—Rsint, Rcost)
G(a(t))-a/'(t) =0

/ G-dr=0
Proposition:

fa F - dr is independent of reparametrization of « as long as the orientation is
presented.
Proof:

Let a(s) = a(h(s)),0 < s < d be a reparametrization.

&' (s) = o' (h(s))h'(s)

Chain rule



Let t = h(s)

t=a < s=c
t=b < s=d

(Orientation preservirs)
dt = h'(s)ds

d
/ F (a(h(s))) - o (h(s))1(s) ds

d
/ F(als)) - &(s) ds

:/F~dr

From the proof, it is clear that

/ F~dr:—/F-dr
—Q [e%

So because of this proposition, WLOG we can assume (if necessary) that « is
parametrized by arclength (only its orientation matters).
What is the geometric / physical meaning of fa F-dr? Assume « is unit speed.

Q

b
/ F.dr= / F(a(s))-d/(s) ds
a 0
Component of F' along the unit tangent vector field.

T(s) = unit vector field along «

This clarifies the two examples.
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Green’s Theorem and Green’s Identities

This is the basic tool that will imply most of the big results in this course.
Theorem:

Let Q be a k-connected Jordan domain and let F(z,y) = (P(z,y), Q(z,y)) be
a C! vector field on a domain Q% which contains Q and 9.

Then
F-dr:// (Qe — Py) dA
o0 Q

Picture here.
Proof:

16



We will prove it for a rectangle and then explain how the general case follows
from that.

On curve (1),

Or (2)

/BQF.dr:/abp(t,c)dt—/abp(t,d)dt+/ch(b7t)dt_/ch(a,t)dt

//SZ(Q ) a4 = /QQidA / By dA
//—dxdy—

Green’s Theorem is true for rectangles.

General Case:

Pictures here.

Green’s Identities

Consequence of Green’s Theorem

We first need some notation.

For the rest of the lecture, Q is a k-connected Jordan domain, and Q7 is a
domain containing QU 9Q = Q,u,v € C2(QF),u,v: QF — R.

17



Definition:

We want to define [y, 5% ds

It is also the line integral along 09 of the vector field (—u,,u,) which Vu =
(ug,uy) rotated 90 degrees counterclockwise

g—z: Outward notmal derivative of u on 0f).

as follows

F(xay> = (_uyaua:)
is a Cl-vector field.
Let « : [0,1] — R? be the arclength parametriaztion of 9.

L
/F dr—/ F(« "(t) dt = /(—uyx’—i—uxy’) dt
0

:/0 (tas ) (o —2) dt

L
— /O (Vu)a(t) - N(t) dt

L ou
= /o %(t) dt

If f € C?(QF), then

/ f@ ds = line integrals of (— fuy, fuz)
oa" 0

n

Green’s Identity #1

/ (Vu) - (Vv) dA = u—ds - // ulAv dA
Q o On
Proof:

We will explicitly evaluate the |, 5 term.
.. See picture.
Green’s Second Identity

/ (vau — u—ds = // (vAu — uAb) dA)
90 671
Proof:

Interchanging u and v in 1st identity and take difference.
Corollary: Inside-Outside Theroem

— ds = / Av dA
\/(')Q an
Lemma:

Let 29 = (z0,50) € R? be fixed.
Let z = (x,y) be variable point.

18



Define r(2) = r(z,y) = |2 — 20| = \/(z — 20)2 + (y — y0)?
log r is harmonic on R\ {2}.

Proof:

Calculate (logr)ys + (logr),, =0

See picture.

Green’s Third Identity

Fix 29 € Q,7(2) = |z — 20|-

1 1 ou 0
=5 // log rdu dA — %/ <log7"8n —um. (log r)) ds
Remark:

This is remarkable. It says that given knowledge of u and % on Jf) and du in
), it determines u inside €.

Proof:

Let € > 0, such that D(z), e C Q.

We can do this by taking e sufficiently small.

Apply Green’s Second Identity to Q\ D(zo,€) ...

See pictures.
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From last time:

Green’s Theorem.

Q k-connected Jordan domain. Q1 domain such that QT 2> QU Q.
Let u € C?(QF), r = |2 — 20}

1 1 ou 0
=5 //Q(logr)Au dA — by /87T (logr) o u%(logr) ds

Inside-Outside Theorem

— ds = / (Au)
a0 a?’l
Recall:

If W is an open set, u € C?(W), we say that u is harmonic on W if Au =
Ugg + Uyy € CO(W) =0 o0on W.

Examples:
1. u(x,y) = Az + By + C: Graph of u is a plane in R?
2. u(z,y) = 2%+ y2, Upy = 2, uyy = =2, Au=0
3. u(z,y) = 2y, Ugy = Uyy =0
4. u(x,y) = €* cosyY, Ugy = €7 COSY, Uyy = —e” cosy, Au =0

19



We will soon see how the examples are related to complex differentiable func-
tions.

Clear:

Any linear combination of harmonic functions on W is again harmonic on W
because A : C2(W) — C°(W) is a linear map.

Harmonic functions on W = Ker(A)

So harmonic functions on W are a real vector space (it is infinite-dimensional)
Theorem:

Suppose * holds, let u € C? (27) be harmonic on QF

Let zp € €2, then
/ 6—u ds =0
o0 on

u(zp) = —% . (log ) g—z — u%(logr} ds
Remarks:
(A) says that for a harmonic function, the ”net flux” across the entire boundary
is zero.
(B) says that a harmonic function is determined by its boudnary behaviour.
(Knowledge of u, 2 on 0 determines u inside 9(2)
Read 2.2 for physmal interpretation.
A characterization of Harmonicity
Theorem:
Let W be a domain, u € C*(W).
Then « is harmonic on W if and only if for every Jordan curve, T', inside W,
whose interior lies inside W, we have fr % ds =10
Proof:
We already know 1) implies 2).
Picture here.
Conversely, suppose 2) holds. We need to show Au = 0 on W. Suppose not
Jzp € W such that Au(zg) # 0 by possibly replacing u by —u, we can assume
(Au) (z0) > 0.
But Au € C%(W), so 3e > 0 such that (Au) (z) > 0,Vz € D(zp,¢) C W.
Then I' = 9Q = C(zp,€) = {2z : |z — 20| = €}

O:/ —ds—// (Au) dA >0
a0 571
Contradiction.

Aside: Differentiation under integral sign
Let R={a < s <b,c<t<d} be arectangle in s — ¢ plane.
Suppose F'(s,t), Fi(s,t) are continuous on an open set containing R.

Then,
b
/ F(s,t) ds

20



is a differentiable function of t on a < ¢t < b and

d [t b
ﬁ/a F(s,t) ds:/a Fy(s,t) ds
Proof:

Define f(t) sttdsg thst)ds
We want to show that f is dlfferentlable on (a,b) and f'(t) = g(¢)

/CTg(t) dtz/;/:Ft(s,t) ds dt
:/b/TFt(s,t)dtds
/FST s,¢) ds

f(t) + constant

Take % use FTC.
g'(1) = f(T)V7 € (a,b)

Corollary:

Let © be a domain in R?, u € C?(Q) harmonic on .
Then in fact u € C* (£2)

Proof:

(Theorem B):

If (x,y) € Q

o) = 5= [ (towr Gt (a(e) ~ u(alo) - (o) ) s

When D is a disc centered at zg, with D =D UdD C Q, and v : [0,1] — R? is
an arclength parametriaztion for dD.

r(z,y,s) = [(z,y) — ((s), 2(s)) |

(z,y) ¢ OD

Keep differentiating as many times as your want. Using differentiation under
integral.

Mean Value Property of Harmonic Functions

Theorem: Circumferential Mean Value Theorem

Let v be harmonic in a domain €.
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Suppose D(zg, R) C Q.

Then
1 27

u(2p) u(z) ds u(R,0) df

o 2rR C(z0,R) _% 0

Polar coordinates centered at zg.

To see that these two are equal on C(z,¢€), arclength s = Rf,ds = Rdf,0 <
0 < 2m.

The left hand side says that the value of u at zy equals the average of the values
of u on the circumference C(zo; R) of D(zo; R)

Proof:

1. We first show that the integral
1
2R C(z0;R)
is independent of R as long as D(zg, R) C (.
Let 0<r <R.

Let C(zp;r) be circle of radius r centered at zp (counterclockwise).

Since u is harmonic on {2, h, the characterization of harmonity,

27
0:/ @ds:/ %ds: @(r,e)rdG
C(zo,r) on C(zo0,r) or 0 or

27 ou
=r ; E(T,H)dQ

d 27
= Ta[/o u(r, 6) do]
constant in r for 0 <r < R

= 27u(r,0),0 < 60, < 2m

Take limit as r» — 0.

27
:/ u(R,6) do
0
2w

lim u(r,8) db

r—0 0

Limit as r — 0T
= 2mu(r, 6,)

= 27ru(zp)

by the continuity of u.
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7 January 20th

From last time:
Let ©Q be a Jordan domain.
Let QT be domain, QT C QU (99).

e Suppose u € C% (Q1) is harmonic on QF
Let zp €

u(zg) = f% (/aﬂ logrg—z - iailogr> ds

where 7(z) = |z — 2|

e 1 is harmonic of Q71 iff
ou
—ds=0
o0 On

(Net flux)
vQ Jordan domain with QU 9Q C Q.

Theorem:

Circumferential Mean Value Property
Let u be harmonic in a domain €.
Suppose D(zg; R) C Q

Then,
1 1 27

2R C(ZO7R)U(Z) 5 2T 0 U(R’ )

Proof:
Second Proof:

Use result (1) with Q = D(z, R) on the boundary of Q, 9Q = C(20; R),r =
R = |z — zy| = Const

1 Ou 1
=—— logR— —u—=d
u(2o) 2 S ogRo- —up ds
(Constant on C(zg, R))
1 1
=——IogR %ds+— u ds
2w C(z0,R) on 2 C(z0;R)

(The first term is 0 by 2)

Definition:

Let Q be a domain.

Let u € C?(Q). We say u satisfies the circumferential MVP in Q iff VD(zo; R) C
Q

)

1

= — u ds
21R Jo(zoim)

u(20)
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So any harmonic function has the CMVP.

Theorem:

Let u € C%() for a domain €.

Then (1) u has the CMVP on § iff (2) u is harmonic on §2
Proof:

We already know (1) = (2).

Suppose (2) holds, let D(zp; R) C .
1 27
u(zp) = %/0 u(r, 0) do

Differentiate both sides with respect to r. (We know we can differentiate under
integral)
And multiply by r.

27
4 Ou (r,0) df

0= —
2r J, On

27
ou ou

0= —r,ﬁrd@z/ — ds

0 3n( ) C(zo,r) on

Inside-outside theorem.

/ AudA YD(zp;1) C
D(ZO’ )

= Au=0o0n

Theorem: Solid Mean Value Property
Let u be harmonic on a domain 2. Let D(z; R) C Q.

Then )
u(z0) = — // udA
0 WR? D(z0;R)

(Again, it says that the value of u at zy equals the average mean value of u over

D(z0; R) € Q)
Proof:
Let 0 <r <R. )
1 i
u(zo) = %/0 u(r, 0) do
by CMVP.

Multiply both sides by r and integrate 0 <r < R

R 1 R 2 1 R 27
/ u(zo)r dr = —/ / u(r,@)r dr df = —/ / u(r,0) dA
0 2 Jo Jo 2 Jo Jo
R2

-
—u(zg) = — u dA
2 ( 0) 27T D(Zo;R)
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Theorem: (Strong Maximum Principle)

Let Q be a domain in R? [We do not assume that it is a Jordan domain nor
even that is bounded]

Let u be harmonic on {2 and non-constant.

Then u does not attain a global max nor a global min on .

Proof:

By contradiction. Suppose u has a global max at zyp € 2. That means u(z) <
u(zp) = cVz € Q.

Let U = {w € Q;u(w) < c}.

This is non-empty because u is non-constant.

and open since u is continuous.

Let E = {w € Q,u(w) = ¢}. Non-empty z9 € F

Q=UUE

since u(w) < ¢ Vw €

Hence, F cannot be open, because if it was, it would give a disconnection of (2.
(€ is connected ).

So E contains at least one of its boudnary points.

That is, there exists z € E, u(z1) = ¢ such that Ve > 0, D(z1;¢) N (R? \ E) =0
Take e sufficiently emall so that D(z1,€) C © (Since Q is open).

There exists ¢ € D(z1;¢€) such that ¢ € U,u(¢) < ¢

[ —z1|=R<e

Since w is continuous, and u(¢) < ¢. There exists a whole ark of the circle
C(z1; R) on which u < c.

u(R,0) < u(z1) V8 in some open arc and u(R,0) < u(zy) V0

Integrate in 0 from 0 to 2.

/0 " u(R.6) db < /0 7 (o) 6 = 2mulzy)

1 2m
o7 J, u(R,0) df < u(z1)

contradicts CMVP.

Hence u does not attain a global max on €.

For the global min, the proof is similar, just change all the equalities. (Or apply
the global max result to —u)

It is called the STRONG maximum principle because we do not need €2 to be
bounded, nor do we need any hypothesis about u on 9.

Theorem: Week Maximum Principle

Let 2 be a bounded domain. Let u be continuous u € C° (@) N C? (Q)

and harmonic on €.
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[ is compact, u € C°(Q2) by EVT, u does havea global max and a global min
on ]

Then: either u is constant, or u assumes its global max and min ONLY on the
boundary.

Proof:

u is constant on = w is constant on Q (by continuity)

Suppose u is not constant on 2, by Strong Maximum Principle. It does not
exist in global max/min on .

Therefore, it is on the boundary? (Not sure what I heard)

Equivalently, Week Maximum Principle says:

If Q is a bounded domain, u € C°(Q) N C?(£) is harmonic on ), then

Vz € @ min u(w) < u(z) < max u(w)
weoN wEIN
Example:
To see boundedness of €2 is essential:

Q= {(z,y);y > 0}
upper half plane.

90 = {(z,0);2 € R}

X-axis.

u(x,y) = y is harmonic, non-constant on €.

It has no global max on Q.

Application:

Uniqueness of harmonic functions with given boudnary values.
Theorem:

Let Q be a bounded domain, let u,v € C° (2) N C? (Q) be harmonic on Q with
ulan = vl|aq-

Then u = v.

Proof:

Let w=u—v, w € C?(Q) NC°(Q).

w is harmonic on €.

1UbQ:=0

If w is non-constant, it contradicts WMP.

So w is constant on €, w|gg = 0= w =0 or .

8 January 22nd

Recall: Weak Maximum Principle (Corollary of Strong Maximum Principle)
2 bounded domain, u € C° (Q) N C?(Q) is harmonic on 2, non-constant.
Then,

max u(z), min u(z)
z€0) z€Q
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are attained only on 9f).

Theorem: Liouville’s Theorem

concerns behaviour of non-constant harmonic functions that are defined on as
large as a domain possible. (i.e on = R?)

Lemma: Harnack’s Inequality

Let u be harmonic on D = D(zp; R), R > 0 such that u(z) > 0,Vz € D.

Then, Vz € D,
R 2
0< < | "
<u) < (gopory ) uteo

(ﬁ)a Positive for any fixed z € D, but it goes to co as z — dD.
Proof:

z € D is fixed.

Let D' ={weR?: |w—z2| < R—|z— 2]}

Apply solid MVP to u on D’.

Ogu(z)W///udA

Since v > 0 on D, and D’ C D, we know

[ ware [[ van

0<u(z)<7r(R—|12—zo|)2//DUdA

Now, apply solid MVT again to u on D this time:

1
= 7R%u(z)
(R — |z — 2))*

Theorem: Liouville’s Theorem

Let v € C? (R?) be harmonic on the entire plane R?. (u is called an entire
harmonic function)

If u is either bounded above on R? or bounded below on R?, then u is constant.
This means Jc € R such that u(z) < ¢,Vz € R2.

Before proving it,

Corollary:

A non-constant entire harmonic function w is neither bounded above nor below.
Hence, it assumes all possible real values. (Image u(R?) = {u(z) : z € R? = R})
Proof:

Suppose u(z) < ¢,Vz € R?

Let v(2) = u(z) — ¢,v(z) > 0,Vz € R?

and v is entire harmonic.

Let 29,21 € R?, let R > |20 — 21].

Apply Harnack to v on D(zp; R).
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R2
0<wv(z) < mv(ZO)

For any R > |z9 — z1]-
Let R — oo (because v is entire harmonic), we get v(z1) < v(20).
Interchanging Roles:

v(z0) < wv(z1)

So
v(20) = v(z1)
= v is constant.
Complex Numbers (Review)
C={a+ib:a,be R} =2R*={(a,b):a,bcR?}

This bijection allows us to define the structure of a 2-dimentional real vector
space on C
That is, we define addition and real scalar multiplication on C by

(a+ib) + (c+id) = (a+¢) +i(b+ d)
(Related to ordered pairs)
t € R? t(a +ib) = (ta) + i(th)
Explicitly, let {e1,e2} be the standard basis of R?
(z,y) = ze1 + yes

Let 1=140i,(a=1€R,b=0€R)

i=0+1-i,(a=0€R,b=1€R)

Map e; — 1,es — i is a real vector space isomorphism from R? — C.

C has additional structure.

We have multiplication of 2 elements of C to give an element of C.

We'll define (a +ib) - (¢ +id) by demanding that multiplication distributes over
addition and that i-i = —1 = —(1 + 0i).

(a+ib)(c +id) = a(c + id) + ib(c + id)
= ac +iad 4 ibc — bd (i* = —1)
= (ac — bd) + i(ad + bc)

From this definition, we get:
z=a+ibw=c+id,z,weC
We get

ZW =Wz
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Commutative.

(21 + 22)w = 21w + zow

z(wy1 + we = zwy + zws)

Distributive.
Z1 = a1 +7:bl,,22 = a2 —|—’Lb2
Ift e R,
(tz)w = z(tw) = t(zw)
z,w,u € C
(zw)u = z(wu)
Associative.

1(c+id)=c+1id
1-z=2Vz€C

1 is a multiplicative identity.

Define R = {a + 0i : a € R}.

(This is not just a one-dimentional vector subspace, it is also closed under
multiplication)

(a+0i) (c+0i) = (ac) + 04
So
R={a+0-i:acR}
is a subalgebra of the real algebra C.

iR={0+ib:beR}
is a 1-dimentional vector space, but it is not a subalgebra.
(b-i)(d-i) = —bd ¢ iR

if b, d both non-zero.
If z=a+1b,
a =R(z) = Re(z) = real part of z

b= (z) =Im(z) = imaginary part of z

Given z = a + tb, we define
Z=a—1b

This is called the complex conjugate of z.
z +— Z is reflection across z-axis hence it is a real linear isomorphism.
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tz=tzifteR

ztw=z+w

Claim: zw =z w

Proof: Directly from definition

2Z = a?® + b?

zZ is real and non-negative and 2z = 0 iff z =0
Define the modulus of z to be

|z| = V2Z
— 1/a/Q_i_bQ

If z =a+ib |z| > 0 with equality <= z=0

Claim: |zw| = |z| - |w]
Proof:
|zw|? = (2w) (zw)

= ZWzZ W

= |2/?|w]?
Corollary:
If z # 0, then

z Z

—_— = =
2 2
2| 2|
Hence, any nonzero z € C has a unique multiplicative inverse.

1 z
-1
A = - = —
z |2

Remark: Suppose R™ is given the structure of a real algebra such that

n

2
pal = Ipllal,¥p.q € R™, [p]> = (»s)
=1

And such that any non-zero p € R™ has a multiplicative inverse (Division alge-
bra).

Do not assume commutative.

Do not assume associative.

Theorem: Hurwitz 1898.

Only Four.

Quaternion.

Octonions.
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9 January 24th

Note:

If z=a+ib < (a,b) € R? then iz =ia —b <= (—b,a) € R?.
Multiplication by ¢ is 90° counterclockwise roration.

Geometric Interpretation.

z=(z,y) € R?

D(z;R)={weR?: |w—z| < R}

z=a+iy |zl = Vaz = Va2 +y?
2€C,D(#R)={weC:|z—w| <R}

C and R? have the same topology.

From now on, we identify R? and C.

Definition:

Let €2 C C be a subset, (usually Q will be a domain).

A complex-valued function on 2 isamap f:Q — C,Vz € Q,w = f(z) € C.
Examples:

1. f(z) =22
2. g(z) =z
3. h(z) = 1;

The examples above have different domains.

Coz=za+iy <= (v,y) € R?
utiv=w: f(z) = f(z,y)

Hence
f(2) = f(z,y) = u(z,y) + iv(z,y)

u(z,y) = Re (f(z,y))

v(z,y) = Im (f(z,y))
So a complex-valued function on €2 is equivalent to two real-valued functions on
Q.
Examples:

z=x+ 1y
f(z) = 2% = (z +iy) (@ +iy) = (2 — y?) + (2zy)
u(z,y) = 2% — y?

v(z,y) = 2xy



v($>y) =Yy

h(z) = — (1‘2)_ 1-7 _ 1-(@—iy)

1—2\1-%2) [1—-22 (1-2)2+y2
1—2
U(J%y):m
Y
’U(I,y)zm
Remark:
Let f:Q — C.

Graph of f = {(z, f(2)) € CxC,z € Q} {(x,y,u(z,y),v(z,y)) € R*; (z,y) € Q}
is a subset of R%. So we can’t draw it.

Limits

Let 2 be open subset of C and let f: Q\ {2} — C. (f need not be defined at
Zo)

We say that lim,_,,, f(z) = wo iff Ve > 0,36 > 0 such that if z € QN D(z;0),
then f(z) € D(wo;e).

Since f: Q C R? — R? and the notion of open sets is the same in R? and C.
This is exactly the definition of limits from Calc 3.

Let wg = ugp + ivg

f(z) = u(z,y) +iv(z,y)

fwo — £(1)] = \/ (u(z,y) — o) + (0, ) — vo)?

f(z) = wy <= ulz,y) = ug AND v(z,y) — vg

1. zZ Z ) =
lim f(z) = wp <= {lm 20 U(2,y) = to

z—20 lim,_,,, v(z,y) = vo
Lemma:
Suppose lim,_, ,, f1(2) = wy,lim,_, ., f2(2) = wa.
Then,
1. lim, ., (f1(2) £ fa(2)) = w1 + we
Automatic.
Proposition:
2.
lim f1(2)f2(2) = wiws
zZ—r20
3.

fi(z) _w
1m = —
zZ—r 20 fz(t) w2
provided wy # 0 and f2(z) # 0 in a neighbourhood of z.
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Proof:
(b)
f1(z)

f2(2)

U,l(x,y) + Z.Ul(a:‘vy)

uz(l‘,y) + iUQ(IE,y)

f1(2) f2(2) = (w1 (@, y)ua(z,y) — vi(z,y)va(z,9y))
+i (ul(xa y)vg(x, y) + Ul(x’ y)UQ(l‘, y))

= W1W2
For (c)
up + 11 . (U,l + ivl)(ug — ’L"UQ) .
Ug + 1V9 B u% + v% h
Continuity
Let  C C be open.
f:Q—-C.
Let zg € Q.

We say f is continuous at zq if lim,_,., f(z) = f(20)

Notice that zo = (zo, %0), f(2) = u(x,y) + iv(z,y)

f is continuous at zq iff both u and v are continuous at (zo, yo)

We say f is continuous on € if f is continuous at z for all z € Q.

It is clear from the properties of limits, that if f and g are continous at zy. Then
sois f+g,fg, %, provided g(z) # 0 in a neighbourhood of z.

Corollary:

Since f(z) = z and g(z) = ¢ = constant are clearly continuous everywhere, it
follows that the polynomials

ag+arz+ -+ a,z"

are continuous everywhere.
And rational functions,
ag+a1z+---+a,z"
bo +biz+ -+ by
are continuous everywhere where denominator is non-zero.
Suppose

f:Ugopen(C*)(c
g:V Copen C = C

with f(u) CV.

Then h = go f : U — C if f is continuous at zg € U and g is continuous at
f(z0) € V.

Then g o f is continuous at zy € U.

Proof:

You have already done this.

The complex derivative

This is new and different.
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Let Q CopenC C.
Let f:Q — C, let zg € Q.
We say that f is complex differentiable at z iff.

i 1) = 1)

zZ—r 20 Z— 20

exists.

Involves being able to devide by non-zero elements of R? =2 C.
We can’t do this in R", n > 2.

For z sufficiently close to zgp, since € is open.

f(2) = f(z0)

Z— 20

is a function of zg.

The notion of existence of limit is the usual multivariable calculus notion.
Example:

fz)=220=C

_ 2 _ 2
lim L =0 20
zZ—20 Z— 20 zZ—z0 Z — 20

= lim (z + 20) = 220
Z—r20

fl(z) =22,VzeC

Lemma:

Suppose f is complex differentiable at zg.
Then f is continuous at zp.

Proof:

f(2) = f(z0) is equal to %(z —29) >0
Properties of the complex derivative
Suppose f and g are differentiable at z.

(f£9) (2)=Ff(2)£d(2)

(f9) (2) = f'(2)9(2) + f(2)d (2)

1Y () P~ F(6)g)
(g) (=) W)

9(z) #0

Enough by continuity.

Proof:

The proof is the same as in Calculus 1.

Because we have the same limit laws and that’s all you need.
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10 January 27th

From last time:
Let Q C C be open, f:Q — C,zy € Q.
We say [ is (complex) differentiable at zg if

i 1) = 1)

220 Z— 2y

= f'(20)

The Chain Rule

Let f: U — C,g:V — C such that f(U) C V.

h=gof:U — Cif fis differentiable at zy and g is differentiable at f(z).
Then h = g o f is differentiable at zgp, and

W (z0) = 9'(f(20))f'(20)

Proof:
Let wg = f(29) € V. Define amap T : V — C by

g(w) — g(wo)

T(w) = pr——

— g (wo)
for w # wy.

T(wg) = 0 by construction, T is continuous at wp.
Solve for g(w) — g(wo).

g(w) = g(wo) = (¢'(wo) + T(w)) - (w — wo)

also works when w = wy.

The equation is true for all w € V.

Let w = f(2),2z € U,wg = f(20). Divide both sides by z — zo.
z # 2

9(f(2)) = 9(f(20))

zZ— 20

= [¢'(f(20)) + T(f(2))] (f(z)f(zo)>

zZ— 20

T(f(z)) — 0 by continuity of f at zg, T at wo.

Analytic Functions

Define:

Q Copen C. Let f:Q — C.

Let zg € Q.

We say f is analytic (also called complex analytic, also called holomorphic)
at zg if f'(z) exists and is continuous in some open neighbourhood U C  of z.
Notice:

By its definition, f is analytic at 2y € Q iff f is analytic at all points in some
open neighbourhood of zj.

Examples:
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U open, U C Q, U > 2 such that f’ exists and is continuous on U.

So f is analytic at zVz € U.

Remark:

It is actually true that if f is (complex) differentiable on an open set U, then
its (complex) derivative f’ must be continous on U.

But this is a hard theorem. (Goursat’s Theorem).

We will do it later in course.

Examples:

1. Any polynomial is analytic on C.

2. Non-example:
Consider the map g: C — C,g(2) = 2z = |2|?> = u(z,y) + iv(z, y)
v(@,y) = 0,u(z,y) = 2° +y.

On Assignment 2: You show that g is complex differentiable at (0,0) but
nowhere else.

So this function g is nowhere analytic.
This g € C*° (R2). So as a function g : R? — R2.
It is differentiable everywhere in sense of Calc 3.

But it is not complex differentiable except at origin.

Cauchy-Riemann Equations

Theorem:

Let f: € Copen C — C be complex differentiable at zy € €.
Then, ug, uy, vy, vy all exist at zp and

Uz (20) = vy(20)
ty(20) = —vz(20)

Proof:
' (z0) = lim,—,,, %ﬁém) exists by assumption.

We get the same limiting value regardless of what path we take in the plane (2
to (x07 yO)

Consider the path y = yg,z — xg.

See pictures.

Remark:

The converse in not true. That is, suppose ug,uy, vy, v, all exist at zp and
satisfy (*).

Then f does not have to be (complex) differentiable at z).

(Counterexample on A2).

You already saw something like this in Calc 3. Suppose F' : U Copen R™ — R™
if F is differentiable at @ € U, then gf: (@) exists Vi=1,...m,j=1,....m

But one can have that all first partial derivatives exist at @ € U and F still not
be differentiable at a.
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Stronger Assumption: if F' € C*(u), then F is differentiable on U.

We have a similar result here.

Theorem:

Let Q C C be open. Let u,v € CY(Q) (ug, uy, vy, vy exist and are continuous on
all of Q)

Suppose u; = vy and u, = —v, everywhere on §).
Then f is analytic on €.
Proof:

u,v € CH(2) — u and v are differentiable on € in the sense of Calculus 3.
Let zg € Q.

where
: Qk(‘r’y) _ o
e o) T@ ) — o] 2
f(z) = fz0) _ u(z) +iv(z) = (u(z0) + iv(20))
2= 20 Z— 20
_ ua(20)(% — o) + uy(20)(y — y0) + Qu(2,y)
Z— 20
4 jYe(z0)(@ = 20) + vy (20)(y — o) + Q2(z,y)
_ ua(20)(2 — 20) + 102 (20) (2 — 20) + Qu (2, y) + Q2(2,y)
Z— 20
= Uz (20) + vz (20) + @u(@,y) + @a(2,y)
Z— 20 Z— 20
Let z — zp.
|Q(fc7y)‘ _ Q)|
2 =20 ||(£L’,y)*(l’0,y0)”

goes to 0 as z — 2.

We have shown that lim,_,
So f is differentiable on 2.
We have also shown that

f(2)=f(20)

zZ—Zz0

exists for all z € Q.

F(2) = up(2) + vz (2) = vy (2) — iuy(2),u,v € CHRQ)
So f’ is continuous on 2. So f is analytic on .
Ugp = Uy, Uy = —Vg

Cauchy-Riemann Equations.
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11 January 29th

From last time:

Q gopen C

f:Q — C is analytic or Q if f’ exists and is continuous on §2.

Let f =u+iv.

Theorem:

with u,v € C*(), then f is analytic on Q iff u, = v,,u, = —v,. (Cauchy-
Riemann equations) on {.

Example:

fz) = 2% = (a® — y?) + 22y

u(z,y) = 0% — 42, v(z,y) = 2ay

Cauchy-Riemann equations are satisfied.

f(2) = up + 1vy = vy —iuy,

Suppose we consider u(x,y) + iv(z,y) where u(z,y) = 22 — %, v(z,y) = ¢ - xy.
Uy = 2T, Uy = —2Y,V; = CY,Vy = CT

Analytic iff ¢ = 2.

Complex analyticity is much more ”rigid” than real variable differentiability.
Cauchy-Riemann equations in polar corrdinates

£(2) = u(z, y) + iv(z,y) = u(r,6) + iv(r, 6)

Polar coordinates.

T = rcost
y = rsinf

for r > 0.
Suppose h € C*(R? \ {0}) by Chain rule,
ox oy

h, = hza +hg§ = cos Oh, + sin hy

ox 0y .
hy = hx% + hy% = —rsin6h, + rcosbh,

Uy = cos Ou, + sin Hu,,
= cos fvy — sin v,
1

= —’Ue
T

v = c0s 0v, + sin Ov,

. 1
= —cos fuy + sin Qu, = —;ue
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Check the other direction, we conclude that

1 1
Uy = Uy, Uy = —Vp > Up = Vg, Uy = — U
Example:
Q:C\{(z,0): 2 <0}
Define f: Q — C by f(z) =logr + 6
0 =arg(z),—m <0 <m.
u(r,8) =logr,v(r,0) =40.
1
Up = — ug =0
T
v =0 vg =1
Uy = %Ug,”ur = 7%11,9.
Hence,

logr + 6

is analytic on €.
You can also check this in z,y coordinates.

u(z,y) = log /a2 + 42, v(z,y) = arg(z,y)

This example is very important and will come back on Friday.

Relation between analytic C-valued functions and harmonic R-valued
functions

Let f:Q — C by analytic on €.

And suppose u,v € C?(Q). [In fact, this is always true. We will prove this
later.]

Up = Uy, Uy = —Vy
Ugy = (uz)m = (vy);v = Uyx
Uyy = (uy)y = —(Vz)y = —Vay

Since v € Cz(Q),vmy = Vyg = Ugg + Uyy = 0.

Thus, u is harmonic.

Similarly, v is harmonic.

So we have shown that the real and imaginary parts of analytic function are
harmonic. (Modulo the assumption that we’ll get rid of later)
Exponential Functions

Recall from Calculus 1, we have a function exp : R — R, exp(z) = ¢
Properties:

exp is C*°, exp(0) = 1.

exp’ = exp,exp > 0 Vzx

exp(z + y) = exp(z) exp(y)

x
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exp(—x) = [exp(av)]_1

We seek a function f : C — C such that f is differentiable and f'(z) = f(z) Vz €
C

This implies:
o f differentiable — f continuous on C
e /= f — f’ continuous on C. Hence f must be analytic on C.

So f = u+ iv must satisfy Cauchy-Riemann equations.

f/:uw+ivwzvy_iuy:f:u+iv
= uy =u— u(z,y) = a(y)e”

for some C'* function a(y).

Uy = —uy =v = v(z,y) = b(y)e”
for some C'* function b(y).

/
Uy = ae” = v, =€”b

vy = be® = —u, = —e"d’
a="b,b=—ad
b =a = —b—bly) : Ccos(y) + Dsin(y)
a” = -t = —a— a(y) = Acos(y) + Bsin(y)

We also want f(0) = 1 just like in the real case.
u(0,0) = 1 = a(0)e’ = a(0) = A
v(0,0) = 0 = b(0)e® = b(0) = —B

B=0,A=1
‘We have shown that

f(z) = e® cos(y) + ie” sin(y) = exp(z)

has following properties. f is analytic on C, f/'(z) = f(z) Vz € C, f(0) =1
This is called the complex exponential function.

Observer: if z = z is real (y = 0).

Then exp(z) = e® = exp(z).

So the restriction of exp to the real line gives the real exp function.

Tt is no longer true that exp(z) > 0.

Example:
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exp(mi) = (z =0,y =m)=—1

exp(gi) =1

We will show soon that exp(z) # 0 Vz and in fact
exp(C) = {exp(z) : z € C} = C\ {0}

Periodicity:

exp (z + 2mik) k€ Z
= exp(2)
exp(z) is periodic with period 27i (very different from real case).
|exp(2)[? = Je” cos(y) + e sin(y)
(e” cosy)? + (e"siny)® = €2 > 0,Y(z,y) = exp(z) # 0 Vz

exp(2mi) = exp(0) =1
Let 21 = x1 + iy1, 22 = 2 + 1¥ys.

exp(21 + 22) = exp ((z1 + z2) +i(y1 + y2))

T1+x2

= ¢’ T1+T2

cos(y1 + y2) + ie sin(y1 + y2)
= e"1e”? (cosy; cosys — siny sinya) + €71 e™? (sinyy cos ya + cosy; sinys)
= e" (cosyy + isinyy) - €2 (cosya + i sinys)

= exp(z1) exp(z2)

exp(z1 + 22) = exp(z1) exp(z2) V21,22 € C

Definition:
Let e € R be the usual base of natual logarithm.
Let we C
Define:
e¥ 1= exp(w)

z=x+iy e* = "W = e%e = e cosy + ie” siny
e = cos(y) +isin(y) Yy € R

Euler’s formula.

(Plug in = = 0 into exp(z))

Corollary:



12 January 31st

From last time:
Let z =z + iy € C.

exp(z) = e® = e cos(y) + ie” sin(y)
exp is analytic on C.

—e® =e* V2

0z
e #£0Vz
ez1+22 — 6ZleZZ
Tk — 2 ke
e27rik =1keC
For y € R, , '
eV = cos(y) + isin(y), [e"Y| =1

Polar form of a complex number
C>z=2z2+iy <= (v,y9) € R? in polar coordinates: =z = rcosf,y =

rsinf,r =y/x2 +y% =|z|.

z=17cost +rsinf
=71 (cosf + isinb)

Polar form of z.
i0| _

|z = [re| = |r[le”| =

¢ is only defined modulo integer multiplies of 2.
0 =0+ 2wk, k € Z also works.

7‘620 _ Tez(0+27'rk)

— 7,61061271']6 _ Tew -1

e'? is called the phase of z = i for 2 # 0.
Suppose z1, 22 # 0, ' 4
21 = 711", 2 = 1ge’

1(01 +62)

02

2129 = TI1Troe€
|z122| = 1172 = |21]]22]

arg(z122) = arg(z1) + arg(z2)
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(Defined up Z-multiples of 2).
Let z =re' = o + iy

Z=x—iy=r(cosf —isinf) =re""
Everything works.
= —i0
1_ 2z _re? 1w
z |22 r2 T
Application of polar form:
nth power + nth roots
z=rel? = 2" = rnei?

n is positive integer.
Example:

z2=14++3
14+ +/3i = 2¢'%

(1 + \/§z)5 —2%(F) = g

nth roots
Let z = re'? = reil0+26m) L c 7,
Claim:

2k

Ck:r%ei(%+ n )7]§:0,1,...,n—1

are n distinct nth roots of z.
(We know that (™ = z has at most n distinct roots from algebra.)

"=z=(C=¢)(C—¢) - (C—Ca-1)
First we show that ((3)" = 2.

Suppose 0 < j < k < n — 1 need to show (; # (x.
Suppose (i =

1= Sk _ pi2m L

G

Contradiction
Examples:
z=1,(r=1).
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2mik

k=0,1,...,n—1}

nth roots of unity = {e
Pictures here.
The Logarithm

e We want to define an inverse to the exponential function (which will be
the logarithm). However, exp : C — C is NOT one-to-one.

Theorem:
Let S={z=a+iy: —m < y < 7}, then exp maps S bijectively onto C\ {0}.
And exp maps the line y = 7 onto the negative z-axis.

Proof:
We already know that exp(z) # 0 for all z.
It is clear that exp(z + im) = e%e’™ = —e? is on negative r-axis.

Let w # 0, we want to show 3!z € S with exp(z) = w.
Let w = ge*? in polar form, g > 0, —7 < ¢ < 7.

Let z =logg,y = ¢.

x+iy €S,

z _ er+iy
_ elogngid)

_ 6loggew — geid) —w
Suppose e*! = e = e*2 for z1,20 € S.
e T =1 < 2z — 2z =2mik,kEZ

21, 29 are an the same vertical line.
21 — 29| = 2wk both in S, on same vertical line

|21 — 2| <2r=k=1= 21 =2

Remark:
We could also take
Sp={x+iy:b—2r <y <b}

for any real number b.

(We took b =)

In the same way, exp maps S; bijectively onto C \ {0} with the upper edge of
Sp mapped onto the ray ¢ = b in w-plane.

We can now define (infinitely many) ”inverses” to exp.

Definition: Let z # 0, we can write z = re??,r > 0.

Choose a strip b — 2w < 0 < b.

Define log(z) = log(r) + i6.

Where 6 is the unique argument of z in the range b — 27 < 6 < b.

log r+i6 _ elog reie _ 0

ef=e re’’ =z
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So we get many different ”branches” of the logarithm. (Which is a multi-valued
function)

Sy = C\ {0}

Inverse to each other.

When b = 7, we usually call this the principal branch of logarithm.
This branch log z is not continuous on the ray ¢ = b in w-plane.
To avoid this problem, we remove this ray from the domain.

Sy ={r+iyecC;b—2n <y<b}
exp maps Sp bijectively onto C \ {0} \ {ray$ = b} and the function
re? = 2 log(z) = log(r) + 0
with b — 271 < 0 < b is an inverse to exp and is continuous on its domain.
Next time:
We will show that the branches of logarithm are analytic and compute the
complex derivative.

13 Feburary 3rd

From last time:
beR,

Sy={x+iy:b—2r <y <b}
exp maps Sy bijectively onto C \ {0}

SY={x+iy:b—2r <y <b}

exp maps 5S¢ bijectively onto C \ {ray ¢ = b} in the w-plane.

Pictures here.

z = re'?

w = pe'?

Inverse map is called a branch of the logarithm (which is really a multivalued
function).

If w=pe®,p>0,b—2r < ¢ <b,

Define logw = log p + i¢.

With this restriction to a particular ”branch”.

The logarithm function is analytic on its domain. (We did this when we talked
about CR in polar coordinates)

f(z) =logr+i0 = u(r,0) +iv(r, 0)
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1

Upr = —Vg
T
1
Vpr = ——Ug
T

CR equations are satisfied.

0 : Any branch of the argument function.

Any branch of log is analytic on its domain which is C\ {0} \ {ray 6 = b}
Principal branch.

Hence, log’(2) exists Vz € Dj.

We seek a formula for derivative of log z.

We know exp(log z) = z,Vz € Dy, because they are inverses of each other.
So by the Chain rule, if I differentiate both sides with respect to z

1 = exp/(log z) log’(z) = exp(log(z))log’(z)
Thus, log’(z) = L just like real case. (For any branch).
Addition Law
log(z122) = log 21 + log 2z + 2mik

For some k € Z which depends on branch choices.

Claim:

Let z # 0, Zm = exp (% log z)

Set of values because log is multivalued.

We claim that it is exactly the set of n distinct n'h roots of z.
Proof:

z=re? = re!@20) 15 0k € Z.

logz = (logr) +i (0 + 27k)

.(9 27Tk>
logr+i|—+ —

This motivates:
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Complex exponents.
Let ¢ € C. We want to define 2¢ for z # 0.
In real case, ce R,z >0

7€ = lo8(z%) — cclogz exp(clog )

We do the same:
2¢ := exp(clog 2)

This is multivalued because log is.

i = exp(ilog i)

2
= exp (z (;—I—Qm'k)) ,keC

All the infinitely many values of i¢ are real!

L) = & (e (elog2))

= exp’ (clog z) - % (clog z)

=exp (clogz) - e
z z
Trignometric Functions
Recall:
If x € R,
T —iex
e = cos(z) + isin(z) — cos(x) = %, reR
) eiz _ eiz
e " = cos(x) — isin(z) — sin(z) = —
i

For any z € C, define

d d eiz+67iz
d—(cosz) — | —



i (sinz) = i 7612 —e”
dz T dz 21

= cos(z)

Clear:
cos(—z) = cos(z)

sin(—z) = —sin(z)

sin?(z) + cos?(z) = 1

This equation gives no bounds on |sin(t)| or cos(t).
Disgression: Real hyperbolic functions

cosh,sinh : R — R

by ot
cosh(t) = ¢ +26

t_ -t
sinh(t) = 26

Defined.

% cosh(t) = sinh(?)

d

o7 sinh(t) = cosh(t)
cosh?(t) — sinh?(t) = 1

Thus, cosh?(t) — sinh?(t) = 1

Hyperbolic functions.

Circular functions.
Complex Hyperbolic Functions

Define: Vz € C B
cosh(z) = ete”
2
% — e~ ?
h(s) —
sinh(z) 5

cosh, sinh are analytic on C.

% cosh(z) = sinh(z)

d
. sinh(z) = cosh(z)
cosh?(z) — sinh?(z) = 1
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Go back to compute trig functions.

cos(z) = u(z, y) +iv(z,y)
eiz + e—iz

2
eiletiy) 4 o—i(z+y)

- 2

(eixe—y + e—ia:ey)

DN = N =

((cosx + isinx)e¥ + (cos(z) — isin(e)e?))

cos(z) = cos(x) cosh(y) — i sin(x) sinh(y)

4
dz
= — (uy + tvz)

sin(z) =

sin(z) = sin(z) cosh(y) + i cos(z) sinh(y)

Don’t memorize any of these.

Only remember: ‘
e = cos(z) + isin(z)

€® = cosh(z) + sinh(z)

14 Feburary 5th

From last time:

zeC
eiz + e—iz
cos(z) = 5
) eiz _ e—iz
sin(z) = 57
e = cos(z) + isin(2)

cos(—z) = cos(z)

sin(—z) = —sin(z)

—cosz = —sinz

dz
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—sinz = cos z

dz
cosh(z) = %
sinh(z) = ¢ _26

€® = cosh(z) + sinh(z2)
cosh(—2z) = cosh(z)
sinh(—z) = —sinh(z)

d
- cosh(z) = sinh(z)

d .
o sinh(z) = cosh(z)

All four functions are analytic on all of C.

Special Case:
Let z=z € R.

cos(iz) = cosh(z)

sin(iz) = isinh(z)
cosh(iz) = cos(z)
sinh(iz) = isin(z)

sin(iz) = ¢sinh(z)

cos(ix) = cosh(x)

So cos and sin are unbounded on C because they are unbounded on the purely

imaginary axis.

Similarly, sinh(iz) = isin(x), cosh(iz) = cos(x).
cosh and sinh are bounded on imaginary axis.

Summary:

cos and sin periodic in z-direction unbounded in iy-direction.
cosh and sinh unbounded in z-direction. Periodic in iy-direction.
Inverse Trig and Inverse Hyperbolic Functions:

(By one example)

Suppose z = cosw. How can we find w?

eiw + efiw
2

9y = W _’_efzw

cos(w) =

e — 224 e W =
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(™) =22 (™) +1=0
piv _ 2z £422 — 4

2
1w = log (Z:l:\/22 —1)
w = —ilog (z +V22 - 1) =cos!(2)

Multivalued because log is multivalued.

cos (i) = —ilog (i & v/=2) = ~ilog (i % v2i)

Harmonic Conjugates

Recall:

If f = u+iv is analytic on Q (and if u,v € C?(Q), (We will see that it is
always true), then u, v are harmonic on .

Question, suppose u € C2 () is harmonic on €.

Can we find a v € C2 (Q) harmonic on 2 such that f = u + iv is analytic.

If such v exists, then v is called a harmonic conjugate of u.

Note: By our definition of analytic, v must be at least C'!, the Cauchy-Riemann
equations must be satisfied:

Uy = Uy, Uy = — Uy

2 1
u€ C” = ug,uy €C
Vg, vy € O = v € C?

Suppose v, ¥ are both harmonic conjugate of u

(’U—'IN))IZO

If Q is connected.

v — v is constant

It is clear that if v is a harmonic conjugate of u, then v+-c is also, for any constant
c € C, we just showed that if €2 is connected, this the entent of non-uniqueness.
What about existence?

Suppose v € C? (), let F = Vv = (v,,v,) is a C* vector field or .

From the Fundamental theorem of line integrals,

/Z:F-dr =v(z) — v(z0)

for any path from zg to z lying entirely in 2.
We start with « € C?(Q), which is harmonic on Q. We seek a harmonic conju-
gate v.
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‘We must have

Vv = (vg,0y) = (—Uy, Usg)

Hence:
Let’s define v : Q@ — R by

v(z) = v(z0) + /z (—ty, uy) - dr

20

For this to give a well-defined function v on 2, we need to show that the line
integral of the vector field (—u,,u;) is independent of the path from 2 to z as
long as it lies entirely in €.

This is not always true!

We need to make an assumption about the set of €.

Recall:

Suppose (2 is a Jordan domain.

Q is 1-connected, (also called simply-connected), means the boundary 9 con-
sists of exactly one piece-wise smooth simple closed curve (Jordan curve).
Equivalently, the ”inside” of 02 of the Jordan curve lies entirely inside (2.
Equivalently, 2 "has no holes”.

Theorem:

Let © be a simply-connected Jordan domain. u € C?(£2) is harmonic on €2,

then ;
/ (—uy, ug) - dr
z0

is independent of the path from zy to z lying entirely in Q.

Proof:

Let’s let 71,72 be two curves in 2 from zj to z.

Then v + v4 Lis a closed loop based at z. (Simple closed curve) implies that
(since € is simply-connected) the inside of 3 + 5 ! Jies entirely inside €.
Apply Green’s Theorem to this curve:

/F~d7'f/F~d7’:/ F'dr://(Qm—Py)dA
T Y2 Y1ty D

Need to show this is zero.

F=(PQ) = (—uy ug)

Qe — Py =Ugg +Uyy =0

92



by assumption.

Hence, the line integral is independent of path.

In general case, we decompose into a finite number of the special case.
Example:

u(z,y) = z° —y?

F = (—uy,uy) = (2y,2z) = V(2zy)

v = 2xy + const is the harmonic conjugate.

u+tiv=(2* —y®) +i(2zy + C) = 2* +ic

is analytic.

u(x,y) = cos(zx) cosh(y)

harmonic on C.

F = (—uy,uy) = (—cos(x) sinh(y), — sin(z) cosh(y))
= V (—sin(z) sinh(z))
v = —sin(x) sin(y) + const

In general, if €2 is a Jordan domain that is NOT simply-connected, then there
is no guarantee that a harmonic conjugate necessarily exists.

Examples:

Puncture disc or annulus.

This is not simply connected.

u = log \/x2% + y?

This is harmonic on {2, because there does not exist a harmonic conjugate v on
Q. On Q\ ray, it would have to be arg(z), which does not extend to €.

15 Feburary 7th

Chapter 4 Complex Line integrals (also called contour intergrals)
Recall: if F = (P,Q) is continous vector field on an open set © in R? and
7 : [a,b] — R? is a curve whose image lies inside €, then we define

[rear= [ (P05 + @) ) a

= /7 (Pdz + Qdy)

Let f:Q — C be continuous complex-valued function on €.

]



f=u+iv,u,v e C(Q)
We want to define fﬂ/ fdz
Motivation:

z=x+ 1y

"dz = dx + idy”
f=u+iv.

/Vfdz':/w(u—kiv) (dz+idy):/(udx—vdy)+iL(vdx+udy)

y
Define:

[yf dz == / (udz — vdy) +i/ (vdz + udy)

v

_A(u,v)-dr+iLZU,u)-dr

Line integrals of continuous vector fields on €2
Aside:

f=u+iv <= (u,v)

:f-dr+i/(iﬂ~dr
vy

f=u—iv <= (u,—v)
if =v+iu <= (v,u)

Circulation and flux of f
Example:

v = (cost,sint) ,0 <t < 7
Compute f7 zdz f(z) = z.

7'(t) = (=sint, cost) = (2'(t), ¢/ (x))

f=ut+iv=a+1y

[y (udx — vdy) + z/ (vdx + udy)

~

See pictures.
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Note: If we went all the way around the unir circle, a = 0,b = 27

/ zdz=0

v

Simplified Notation:

Let v(t) = (z(t),y(t)) € R? < C 3 2(t) = z(t) + iy(t)
Complex-valued function of ¢ € [a, ]

Define: 2/(t) = 2/(t) + iy (t)

Make sense because v'(t) = (2'(t), v’ (¢))

Proposition:
b
[rae= [ re@)w
Proof:

b
=1/[UQ@LyUD+4v@@%yQDHf@%+WTﬂ]ﬁ
= / (udx — vdy) + z/ (vdx + udy)
= / fdz

Example:

See Pictures.

Theorem: (Analogue of fundamental theorem of calculus)

Let f : Q@ — C be continuous. Suppose 3 F :  — C analytic on  with
F'(t) = f(2),Vz € Q.

Then

If v(a) = z0,7(b) = 21

Not only does this give us an easy way to compute, but it says that f7 F'dz is
independent of the path from zy to z; provided the path lies entirely in 2.
Proof:

f=u+iv,F=U+1iV

F' =U, +iV, =V, —iU,

(Cauchy-Riemann)
f:U+Z.”U,7.L:Ux - Vy,v:Vz = *Uy

Y(b) = 21 = x1 +iy1,v(a) = 20 = o + 1Yo
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Lfdz:

(udx — vdy) + 2/ (vdz + udy)
8!

(dex—FUydy)—Fi/(dex—l—Vydy)
2

(VU) - dr +i/ (VV) - dr

$17y1) - U(an yO) +1 (V(xhyl) - V({E(J, yO))
Zl) — F(Zo)

Il
S S~ 5

Example Revisited:

Same answer for any path from 1 to q.

See pictures.

Corollary:

Suppose 3 F : Q — C analytic such that F/ = f on Q.

Then
/f dz=20
5

for any closed curve v lying-entirely in 2.

Example:
fz)==%
does not appear to have an antiderivative.
7(t) = (t1),0<t<1
Yt) = (t,#?),0<t <1

/ zdt:/ol(t—it)(l—ki) it

1
:/ (t —it +it +t)dt
0
1

:ﬁ‘ =1
0

F((0)) = a(t) — iy(t) = £ — it2,33(1) = (1 - 20)

1
/zdz:/ (t —it?) (14 i2t) dt
Y2 0

We can see that they are not equal.
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16 Feburary 10th

One more example:

J(2) = .0 eC\ {0}

Let v = circle centred at origin with radius R > 0, (counterclockwise).
Compute fv 1dz.

I, 1dz = 2mi

I did this in A3.

Independent of R!

Remark:

This proves (which we already knew) that does not exist a function F': Q@ — C
analytic on Q with F/ = f =1
Example 2:

Let C(zp; R) be the circle of radius R centered at zo such that 0 ¢ D(zo; R).

then )
/ —dz=0
C(zo;R) z

Because we can remove a ray emanating from the origin to get a domain con-
taining D(z0; R) on which 1 does have an antiderivative (a branch of logarithm).
Midterm ends here!! Up to including 4.1.2.

The M-L inequality (Very important)

Theorem:

Let ' be a curve in C, let f be a continuous complex valued function defined
on I' (usually it will be defined on a domain containing T).

Let L = Length of ~.

Suppose that |f(z)| < M,Vz on I'. (there always exists such an M because

lf(2)] = \/(u(sc,y))2 + (v(x,))* is continuous function on a compact set I' =

7(la, 0]))

Extreme value theorem.
Then:

<ML

/Ffdz

(CSI:/fdz:\I\ei“’
r

Proof:

for some phase ¢ unique if I # 0.
(If I =0, nothing to prove)
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b
If\el”’:/ Fz(1)2 (t)dt
b

R >[I =/ e” ™ f(2(1))2! (t)dt

a

Z/bU(t)dt—l—i/bV(t)dt
We have \ .
/ U(t)dt=|1|,/ V(t)dt =0
m—/%WWS/bwmﬁ
U®)] < le™™ f(2(t)2' (2]
= [f(z(®)]Z(t)]
< M0 + (1))
b
1] S/ M\/(f’(t))2+(y'(t))2dt:ML
Example:

/ 22dz
r

L = Lengthy = v2

uunzuﬂzvﬁg(wazzzzm[

|/22dz\ < 2V/2
r

by ML inequality.
We can explicitly compute this

/zzdz|:\/m:2\/§
r 9 9 3
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ML inequality is not used in practice or explicit integrals.

Example: (of the type where will use ML inequality to prove theroems)
Let f:Q = D(z0; R) \ {20} — C (punctured open disc) be continuous on €.
Suppose |f(z)] < M on Q.

Suppose further that

I. = / fdz
C(zo;7)

is independent of r for 0 < r < R.
(This seemingly artificial hypothesis will arise often)
Claim: I, =0,Vr € (0, R)

Proof:
|I.| < M27r,Vr € (0, R)
=1, =0
Sol.=0
QED.

1
/ —dz = 2mi
C(0;R) ?

independent of R, but 1 is not bounded on D(0, R) \ {0}.

Cauchy Integral Theorem

Theorem:

Let Q be a domain, let f : 2 — C be analytic on .

Let I" be a Jordan curve (simple, closed) lying entirely in €2 whose interior also

lies in 2.
/ fdz=20
r

Then

(If f = F’ for some analytic F', then fﬂ/ fdz =0 even if v encircles "holes”)
We don’t assume that f = F’ but we do assume f analytic.

Proof:

Let D = interior of I', D is a Jordan domain, 0D =T.

We need to apply Green’s Theorem.

/Ffdz = /r:aD (u + iv) (dx + idy)
= / (udz — vdy) + 1 /8D (vdz + udy)

- /E)Z[(—v)l _wy)dA +i //D(u —v,)dA

=0
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by Cauchy-Riemann equations.

Note:

The assumption that I' does not encircle any "holes” is necessary.
Q=C\{0} f(2) =1 analytic on Q.

Picture here?

I" is a Jordan curve.

Jp fdz =2mi #0

Applications:

/ cos(sin z)dz = 0
r

/ e dz =0
r

for any simple closed curve I' in C.

because integrands are analytic on all of C.

Notice: We can’t find explicit anti-derivatives!

Generalizations of Cauchy Integral Theorems (CIT):

Consider when the curve I' is closed but not simple (it has self-intersections)
Picture here!

Suppose I lies inside 2 and the interior of each ”lobe” lies inside 2.

Then I' =T'; + I's when I'y,I's are Jordan curves whose interior lies inside 2.

/ fdz = fdz + fdz
r Ty

I'>
CIT-,0+0=0

More generalization next time.

17 Feburary 12th

Last time:

Cauchy Integral Theorem (CIT)
Let f: Q — C be analytic on Q. Let I’ be a Jordan curve (simple closed) lying
in 2 and whose interior lies in ).

Then
/ fdz=10
r

Generalization of the Cauchy Integral Theorem
Last time we argued that the CIT still holds for closed curves with a finite
number of self-intersection. (non-simple) as long as all the ”interiors” of I' lies
inside €.
To make a ”precise” statement of this, requires the language of homotopy of
path.

We'll give a less precise statement.

Strong Cauchy Integral Theorem (SCIT)
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Let © be a domain, f : 2 — C analytic on (.

Let T be a closed curve lying in  (Not necessary simple) which can be shrunk
to a point continuously without leaving €.

Then fF fdz=0.

Example:

See pictures.

Important Special Case of SCIT:

Suppose (2 is simply-connected, (it has "no holes”).

 is simply-connected <= any closed curve I' in 2 can be shrunk to a point
without leaving €.

Aside:

If Q is a Jordan domain, then € is simply-connected if and only if € is 1-
connected. (02 consists of single Jordan curve)

But the definition of simple-connectedness for a domain €2 does not require 2
to be a Jordan domain. (It doesn’t even have to be bounded)

Corollary of SCIT:

If Q is a simply-connected domain, and f :  — C analytic on (.

Then [ fdz =0 for any closed curve I lying in Q.

Another Corollary of SCIT:

Let © be a domain, let f: 2 — C be analytic on €.

Let I'1,T's be two (piecewise smooth) curves in Q from zy to z1, such that all
points "between the two curves” lie in (2.

Then
/fdz:/ fdz
I I's

”independence of path”
Proof:
Apply SCIT to I'1 4+ 1—\2—1.
Corollary
Let Q be a simply-connected domain. Let f :  — C be analytic on . Let
20, 2z € €. Define
F:Q->C

by .
Fz) = / Fw)dw

for any curve in Q from zg to z.

Then F' is well-defined and continous on ).

Proof:

Well-defined is immediate from previous Corollary. We need to show F': Q — C
is continuous on €.

Let z1 € 2, we need to show that F is continous at z7.

So we need to show that

lim F(z) = F(z1) < lim (F(z) = F(z1))=0

z—21 Z—r2z21
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zZ0 Z0
z zZ0
| [ swdws [ fw)w
zo Z1
=| [ flw)dwl
z1
< sup (length of this curve)

w on this curve z1 —z

f is continous on {2 any curve is a continuous set, so f is boudned on the curve.
So by Squeeze Theorem,

Zlgrzll F(z)=F(x)
So F'is continous on €.
In fact, it is true that F is analytic and F’' = f. We will prove a more general
result:
Theorem:
Let f : C — C be continuous on € and suppose F(z) = fzzo f(w)dw is inde-
pendent of path for any polygonal (Piecewise linear) paths from zy to z in
Q.
Then F is analytic on Q and F’ = f.
Note:
If f is analytic and €2 is simply-connected, then

/ f(w)duw

is independent of path for any path in Q from zg to z.

Before we prove this, let’s state an amazing corollary.

Corollary:

If f:Q — C is analytic on a simply-connected domain 2.

Then f = F’ where F(z) = fzzo f(w)dw for any path from zp to z in Q.

(So on a simply-connected domain, any analytic function is the complex deriva-
tive of analytic functions)

d z
& [ fh = 1)

”Fundamental Theorem of Calculus”
Proof:

Let z1 € Q.

Need to show lim,_, ., of above is f(z1)
Pictures.
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18 Feburary 24rd

In pictures.

19 Feburary 26th

Cauchy Integral Formula

Let f:Q — C be analytic on a domain €.

Let T be a Jordan curve in R with int(T") C Q.
Let zg € int (F)

_ 1 f(2)
f(z0) = i Fz—zodz

Characterization of complex differentiability (analyticity) using real partial deriva-
tive.

Aside:

Let f(z) = u(z,y) +iv(z,y),u,v € C' (Q)

If f is analytic on €, then

of , ‘
T = Up T Wy = Vy — Wy

0z
1 1
= 5 (ug +ivg) + 5 (vy — tuy)

P DA L o
ar ‘oy) " T 2\oz ay) "

(aax — Z88y> (u+iv)

2
1
2
1
2

when f is analytic.
Define: (Just notation)

9 _1(0 0
0z  2\0z Oy
This is a complex-valued first order linear differential operator.

Suppose as before f = u + v, u,v € C!
Compute

63



of _1 iJrz3 (u 4+ iv)
0z 2\ 0z dy
1 .
=3 (ug + tvz) + % (uy + ivy)
1 .
2

7
(ug —vy) + §(vx+uy)

So ﬂ =

Cauczily Riemann equations are satisfied.
f is analytic.

Summary:

f=u+iv,u,v e C(Q)

See pictures.

Next, we prove a complex version of ”differentiation under integral sign”.
Lemmas:

Let €2 be a domain. Let T" be a curve (not necessarily simple or closed.)

Such that T NQ = 0. Let F(z,¢) be continous Vz € T',{ € Q and analytic in
e

So %—Ig(z, ¢) is continuous Vz € T', { € Q.

Then [ F(z,() is analytic V¢ € Q.

and

dC/ (z,0)dz = 8—<( ,Q)dz
Proof:

Let z=2z(s) onT';a < s <b.
See pictures.

Let’s apply this to Cauchy Integral Formula.
Let f:Q — C be analytic on a domain €.
Let T" be a Jordan curve in Q such that int (I') C  and let ¢ € int (T")

Then
(G
21 Jrp 2z —C

f(¢) =

Integrand is JZC(Z)

Ceint(T) w ith

is continous Vz € T and ¢ € int (') and it is analytic in

a% (f . )c) B <zf(z<)>2
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Continuous for all z € T', ¢ € int (")
We can apply the lemma.
Q in lemma < [(T) here

Lemma says f(¢) =

2m F Z dz is analytic in ¢ and

¢ 3 [ 250 = o [

oy L f(z)

First Generated Cauchy Integral Formula.
Now, do it again.

S0 = 1)
1 0 f(2)
~ i ). 3 ( ) *
2 (z
“wife
Keep repeating:

We’ve proved f is infinitely (complex) differentiable at all ¢ € int (T"), and

Wm“/(m>w

27 Jp (2 = Q)7

Notice: n = 0 gives original CIF.

What we have shown is:

Suppose f is complex-valued function on some domain 2, and its analytic at
¢eq.

Then, it’s analytic on D((,€) for some € > 0.

Apply GCIF to I' = C((, §)

= f is infinitely complex differentiable at (.

” Applications”
R e R AT

allows us to compute certain integrals of this form for f analytic.
Exercise:
¢ =0,n=05, f(2) = sin(z) analytic everywhere.
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See pictures.

20 Feburary 28th

Generalized Cauchy Integral Formula

Let f: Q — C be analytic on a domain 2. Then f is infinitely differentiable on
Q.

Let I' be a Jordan curve in 2 with int (I') C €.

Let zp € int (')
£ (z0) = “!/F(f(z)dz

Then
2mi z— zo)" !

Can be used to evaluate certain integrals.

Example:
h
/ Cos 4(z) &
T z
xr = =+2,y = +£2. A square.

f(z) = cosh(z), analytic everywhere.
(=0,n=3

h 21 211
/ cosh(2) 4. — 2™ k) () = 2™ (o) = 0
- 3! 6

24

We notice that COSZ#(Z) is not analytic in int(T).

So [.h(z)dz =0 # h analytic in int(I')
The converse is the CIT.

Corollary:

Let f = u 4+ iv be analytic on a domain ).
Then u,v are harmonic on ).
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Proof:

We already showed this is true provided u,v € C? (Q).

But now we know this is always true because f”’ exists so f” continuous on
Q.

f=u+iv
= Uy +ivy = vy — tuy
"o o . _ . _ .
[ = Uge + 0y = Vya — MUye = Uy — gy = —Uyy — Wya

continous on §).

2
Uz, Ugy, Uyz, Uyy, Uz, Vay, Vyz, Vyy € C (Q)
= Uy + Uyy = 0,055 + Vyy =0

Ugz + Uyy
=(vy)a — (Vz)y =0

So if f = w + iv is analytic on €, then u,v € C* () and harmonic on €.
Circumferential Mean Value Property

Let f: Q — C be analytic on a domain Q. Let D(zp), R C Q.

Then

1 ,
f(z0) = 27/ (f(z0) + Re™) db
T Jo
Average of f over C(zp, R) equals value at centre.

Proof:

F(2) = u(z) + iv(2)

Harmonic on

f(z0) = u(z0) +iv(z0) = 1/%“(2 +R€i9)d9+i/2piv(z + Re'®)dQ
oo " 9 Jo 0 ; 0

™

27

_ % [ (ot Bt
Remarks:
On A4, you give a different proof using CIF.
Solid Mean Value Property
f :Q — C analytic on a domain 2.
D(zp, R) C Q.
Then,

1
= — dA
Je) = //Dm,m !
Proof:

Apply Solid MVP to u,v (harmonic)
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f(z0) = u(z0) + 1v(20)

FRQ// udA + 1 RQ// vdA

—RQ / A fdA

Example:

2 )

/ log(2 + ee?)df = 27 log2 > 0

0

Using CMVP
/ log(z)dz =0
|z—2|=¢

Using CIT

Because log is analytic on an open set containing D(2,¢€).
Let’s see explicitly that these are not the same.

2(0) =2+e? 0<0<2r

Parametrizes C'(2;¢).

2w
/ log(z / log(2(0))2'(0)do
C(2;€) 0

2m
/ log(2 + ee')eie? df
0

Example:

// cos(z)dA
D(0;1)

Using the SMVP:

7(1)%cos(0) = m

Maximum / Minimum Principles

Recall: The strong / weak maximum / minimum principles for harmonic
functions.

SMP: Let Q2 be a domain. A non-constant harmonic function on 2 does not
attain a global maximum nor a global minimum on €.
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WMP: Let Q be a bounded domain. Suppose u € C? () N C° () and har-
monic in (2.
If u is non-constant, then u attains its global maximum and global minimum
on 0N only.
These results do not directly generalize to analytic functions (which are complex-
valued!) because C is not natually ordered.
It does not make sense z,w € C, z < w.
Given z,w € C, |z|,|w| are real.
So |z| < |w| makes sense.
Definition:
Let © be a domain. Let f: Q — C be a function on €.
We say f attains a maximum modulus on  if 3z € Q such that |f(2)] <
|f(20)],Vz € Q.
(i. e if the real-valued function z — |f(2)| has a global maximum at zg)
Strong Maximimum Modulus Principle
Q) a domain.
f: Q — C analytic on €, and non-constant. Then |f(z)| does not attain a
global max on Q.
Proof:
If f(Q) = {w e C,w = f(z) for some z € Q} is unbounded, then the result is
clear.
So we can assume f(£2) is bounded.
Suppose f does attain a maximum modulus on 2.
So dzg € € such that
0 < [f(2)] < 1f(20)], V2 € Q

Note:
f(z0) # 0 (if so, f(z) =0,Vt € £, but f is nonconstant)

So | f(z0)] > 0, f(20) # 0.
Define g(z) = f(z) + ¢ f(20) where ¢ is real and ¢ > 1.
Triangle Inequality:

l9(2)[ = ¢~ [f(20) = [/ (2)]
= (¢ = DIf(20)| + [ (z0)| = [f(2)] = (¢ = D[ f(20)[ > 0.

So g(z) # 0,Vz € Q.

g is analytic on . g(z) # 0,Vz € Q.

We will show (next time) that g also has a max modulus at zg. Then we will
get a contradiction.

21 March 2nd

Strong Maximum Modulus Principle
Let Q C C be a domain.
Let f:Q — C be analytic and non-constant.
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Then f does not attain a global maximum modulus on ).

(i.e There does not exist zg € Q with | f(z)| < |f(20)|,Vz € Q)

Proof:

Last time:

It is clear if f(£2) is unbounded. Assume f(€2) is bounded and such a zp € Q

exists.

If(2)] < |f(20)],Vz € Q

So f(z0) # 0.
Let g(z) = f(2) + ¢f(z0),c > 1

9(2)[ = clf(z0)| = [f(2)| > 0

Claim: g has a maximum modulus at zp.
Vz € Q

l9(2) < 1F ()| + el f(20) < [f(20)] + ¢l f(20)] = (1 + )| f(20)] = |g(20)]

Notice: g is analytic on , g(z) # 0,Vz € Q, and |g(2)| < |g(20)],Vz € Q.
We need to get a contradiction.

We can define a branch of the logarithm such that g(£2) lies in its domain.
Let h(z) =log(g(z)), this is analytic on Q.

log|g(2)| +iarg(g(z))

The real and imaginary parts are harmonic on its domain.

log |g(z)| is harmonic on 2 and attains a global maximum at zp. (Because
log(0, 00) — R is strictly increasing and |g(z)| has a global max at zp)

By Strong Maximum Principle for harmonic functions, applied to the function
log |g(z)|, we conclude that |g(2)| is constant.

On earlier assignment, you proved if g is analytic on Q and |g(z)| is constant,
then g is constant.

Contradiction! So zy does not exist.

(Need to take ¢ sufficiently large so that g(£2) lies on one side of a line through
origin. We can do this because g(£2) is bounded)

Weak Maximum Modulus Principle

Let © be a bounded domain and f : 2 — C continuous on € and analytic on
Q.

Then f attains its global maximum modulus on  only at points in 9<.

(By Extreme Value Theorem and Strong Maximum Modulus Principle)
Minimum Modulus Principle

Let 2 be a domain. Let f : 2 — C be non-constant and analytic on 2, with
f(z) #£0,Vz € Q.

Then f does not attain a global minimum modulus anywhere on ).

If there exist zp € Q with f(z9) = 0, then f does attain a global minimum
modulus at zg.

Proof:

Since f(z) # 0,Vz € Q.
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"=
is analytic on €.
1
|h(z)| = m

has a global maximum

Then, |f(z)| has global maximum which it doesn’t by SMMP.

Proposition:

Let f, g be analytic on Q (domain).

Let T' be a Jordan curve in © with int(T") C Q.

If f(2) =g(2),Yz €T, then f(z) = g(z),Vz € int(T")

Proof:

h(z) = f(z)—g(z) =00on T = 9(intT") |h(z)| = 0,Vt € intl’ f(z) = g(z) on intT.
Recall Liouville’s Theorem for harmonic functions:

Let u : R? — R be harmonic on the entire plane (entire harmonic).

If w is non-constant, u is unbounded.

Theorem: Liouville’s Theorem for entire analytic functions.

Theorem: Let f : C — C be analytic on entire plane (entire analytic)

If f is non-constant, it implies that f is unbounded.

Equivalence: If f is bounded, it implies that f is constant.

Proof: Suppose f : C — C is analytic and |f(2)] < MVz. |u(z)| < M, |v(z)| <
M, Vz

Using Liouville for entire harmonic.

u, v constant. So f = u 4+ iv is constant.

Fundamental Theorem of Algebra

Theorem: Let p(z) = a,2™ + ap,_12" "1 + -+ + a1z + ag be a polynomial of
degree n with complex coefficients. a; € C,i =0,...,n,a, #0

Then there exist zy € C such that p(z9) = 0.

(i.e every non-constant polynomial over C has at least root in C hence at most
n roots)

Proof:

First, we claim that given any positive real number, M > 0, 3R > 0 such that
p(=)] > M. ¥z > R

("p” goes to infinity as z — 00)

Proof of claim:

Choose k > 0 such that

Ap—k ‘anl

ok §%7V|Z|ZR,]€:1,...,TL

1

(Take R > maxj—1 {(QHG”’“l)k}, an 7 0)

lan]

Then |z| > R = |z|F > 2nan k|

lan]
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By Triangle inequality,

An-1 Q2 ag, _ nlap|  an]
|z+22++z”|_2n_2
for |z| > R.
|4k lan]
zk 2n
k=1,...,n
Ay — Ay — a
P(z) = 2"(an+ ="+ =37 4 )
Ap—1 ao
P)] = Ja" |an + (=2 4+ 22|
a a
for |z| > R.

Using triangle inequality.
1
Lt > (2)"

lan]|

|z2| > R=|z|" > R" = 24

lan|

See pictures.

22 March 4th

Liouville’s Theorem for entire analytic functions

Let f : C — C be analytic on the entire plane C if f is bounded = f is constant.
Equivalently if f is non-constant = f is unbounded.

Example:

Let f: C — C be entire analytic and suppose that |f(z)| < |e*|,Vz € C.

Then f(z) = ¢ e? for some ¢ € C with |¢|] < 1.

Proof:
h(z) = % is entire analytic. By hypothesis,
=G <
eZ

By Liouville, h(z) = ¢,|c| = |h(z)| < 1.

You may have heard that a polynomial grows slower than an exponential in real
analysis.

Suppose f(z) is a polynomial, let z = z be real and very negative, |f(z)| is
large, but |e”| is small.

[f (@) £ |e”|
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for z large negative.
The Cauchy Inequalities for f(™(z)

Let f: Q — C be analytic on Q. Let D(29; R) C Q.
Let M(zo; R) = MAXC(20:R) [f(2)].

Then,
nIM(zo; R
170 zg) < 0T
Proof:
By GCIF,

).y f(2)
0 = 5 /cmm Gy

By ML inequality,

n! M(zo; R)
%7Rn+l 27TR
M (20; R)

Rn

11 (z0)] <

=n!
Remark: Normally, bounds on derivatives of a function are used to obtain
bounds on the function itself.

This result shows that for analytic functions, we can also do the opposite.
Bounds on the function yield bounds on all of its derivatives.

Corollary of Cauchy inequality

A different proof of Liouville Theorem.

Suppose f is entire analytic and bounded.

|f(z)| < M,VzeC
M(ZQ;R) < M,Vzpe C,VR >0
By Cauchy Inequality for n =1,

=S

[ (20)] <

for any R >0, = f'(z9) =0,Vz9 = f const.

Morera’s Theorem

Let R : Q2 — C be continuous on a domain €2, and suppose that fr f(z)dz=0
for any Jordan curve I' lying in 2.

Then f is analytic on €.

(TEXT INCORRECTLY SAYS WE NEED int(T") C Q)

Remark: If int(T") C Q and f is analytic, then fF f(2)dz =0 by CIT.

So Morera’s Theorem is a kind of converse to CIT.

Remark:

Morera’s Theorem gives a sufficient but not necessary condition for analyt-
icity.
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Example:
f(2) = 1 is analytic on Q = C\ {0}, but [, f(z)dz # 0 if T encircles origin.
Proof:

/ f(z)dz = 0,VJordan curvesI in 2
r

z
= / f(2)dz is path independent for any path from zp to z lying in
z0

By earlier theorem, if f; f(¢)d( is path-independent for all polygonal (piecewise-
linear) paths in €, then

re) = [ TR0

is analytic on Q and F’ = f

Now we use the fact that:

Since F' is analytic, F' is infinitely differentiable and all its derivatives are ana-
lytic on 2.

(This was a corollary of GCIF.)

So F' = f is differentiable on €.

F" = f’ is differentiable, hence continous on €.

So f is analytic on €.

From the proof, it is clear that the hypotheses can be weakened to

/rf(Z)dZ =0

for any closed polygonal (piecewise-linear) curve in €.

It then follows that we can further restrict to triangles.

Application of Morera’s Theorem

Removable Singularities.

Let D = D(zp; R) be an open disc centred at zy € C.

Suppose f: D — C is continuous on D and analytic on D \ {2y} (punctured
disc).

Then f is also analytic at zg.

Proof:

Since f is continous on D, [i. f(z)dz exists for any Jordan curve I' in D, There
are three cases.

1. zo & int(T), z9 AnD
2. zp € mt(I‘)

3. 2ol
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So if we can show [ f(z)dz = 0 in all three cases, then Morera’s Theorem tells
us f is analytic on D.
If 20 ¢ T, 29 ¢ int(T).

/ f(z)dz=0
r
by CIT.

Because f is analytic on open set containing T', int (T").
Case 2:
zo € int(T"). By earlier results,

/Ff(Z)dZ:/C(zo;e)f(Z)dZ

provided e is sufficiently small so that D(zp;€) C int(T).

By ML,
/ f(z)dz| < M27e
C(zo03€)

M : max of f on D(z; &).
Let € < g.
For all e sufficiently small,

/rf(Z)dZ = /0(20;6) f(z)dz=0

)

Case 3: 2o € I.
Let T differ from I', only "near zy’

/ff(z)dz =0

/Ff(z)dz—/fdz:/Bf(z)dz

(By continuity and ML inequality).

So [ f(z)dz = 0 for any Jordan curve I in D.

So f is analytic on D.

Later in this course, we will give another proof of "Removable singularities”
using power series.

Schwarz Lemma (Shows again how rigid analytic functions are)

Let D = D(0,1) be the open unit disc centered at origin.

Let f: D — C be analytic on D and such that

1. f(0)=0
2. |f(2)] £1,Vz e D.

(2) says f maps open unit disc into the closed unit disc.

such that T is of case 1 or 2.
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Then, we must have
|f(z)| < |z|,Vz2€ D

and

[F(O0)] =1

Moreover, if equality holds in (A) for some z € D, or equality holds for B. (i.
e) if 3z € D, such that |f(2)| = |z| or if | f'(0)] = 1.

Then f(z) = €2 for some constant e?.

Hence |f(2)| = |z|,Vz € D and |f'(2)| = 1,Vz € D.

Rotation about origin by angle ¢.

23 May 6th

Recall: Removable Singularities

Let D : D(zp; R) if f : D — C is continuous on D and analytic in D\ {zo}, then
it is analytic on D.

Schwarz Lemma

Let D = D(0,1) be the unit open disc.

Let f: D — C be analytic on D such that

1. f(0)=0
2. |[f(z)| <1,VzeD

(Maps open unit disc into the closed unit disc).
Then

L |f(2)| <|z|,Vz € D
2. 170 =1

Moreover, if equality holds in (A) for some z # 0 in D or if equality holds in
(B). Then

f(z) =€z
for some constant e®?
Hence, |f'(z)| = 1,Vz € D,|f(2)| = |z],Vz € D.
Proof:
Define g : D — C by

for z # 0.

9(0) = f'(0)

By construction, g is analytic on D \ {0} and continuous on D.
Hence, by removable singularities, g is analytic on D.

Let 0 <r < 1,let D, = D(0,r).
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By the weak maximum modulus principle, 3z, € 9D, = {z € C, |z| = r} such
that |g(2)| < |g(2r)], ¥z € D,.

o el 1
9] < lg(an)] = 250 < 0
We get |g(2)| < L,Vz € D, |z|=r|f(2)| <1,Vz2€D
= l9(z)| <1,Vz €D
l90) = [f'(0)] <1
by (B)
2 #0,]9(z)| = f( ) <1,=|f(2)| <|z|,Vze D

Now, suppose equality holds in ( ), for some z # 0 or equality holds in (B).
Then |g(z)| =1 for some z € D.

But |g(z)] < 1,Vz, so g attains a global maximum on D.

By Strong Maximimum Modulus Principle, (since g analytic on D), we must
have g(z) = ¢ constant.

So

Chapter 5: Complex Series, and Power Series over C (and relation to
analyticity)

Review real series

Let ap € R,VE > 0.

We say Y po ar converges iff limy_, o0 (Z]kvzo ak) exists.

Since a sequence of real numbers has a limit iff it is a Cauchy Sequence, we get
> e ak converges iff Ve > 0,3N > 0 such that N <n < m.

Then |a, + -+ am| < €,[Sm — Sn-1] < €.

Complex Series

Let c¢x = ap + by, € C,Vk > 0.

We say >~ cr converges iff limy o0 (Zk:o ck) exists.

| Jim (Z ak> +i (Z bk>

If (ag,br) € R? is a sequence, then (ay,br) — ko0 (a,b) € R2.
Iff A —“k—oo @ and bk —k—o00 b
Because,

[I(ak, bx) = (a, )| = |ar — a|® + b — b]?

Hence, >~ .7, cx converges iff both Y32 a, and Y o by converge.
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And . . .
Z(ak + ibk) = <Z ak> +14 (Z bk>
k=0 k=0 k=0

Absolute COnvergence
Let >y, cx be a complex series.

N
i, (Z )
k=0

We say the sequence converges absolutely iff "7  |cx| converges.
limy oo Zg:o lex| exists.

Proof:

If Y72, ¢, converges absolutely, then it converges.

Proof:

Let € > 0,3N > 0 such that N < n < m then

|Cn|+"'+‘cm| Sﬁ

Because Y~ |ck| converges.
By Triangle inequality,

len 4+ em| Sleal 4o+ lem| <e¥mZn <N

Hence Y 72, ¢k converges.
There exist series that converge, but do not converge absolutely.
Example:

k
k=0
Proposition:
Suppose Zzozo ¢, converges, then
1. limg o ¢ = 0 (Terms go to zero)

2. 3M > 0 such that |c;| < M,VE (Terms are bounded).

Both necessary for convergence but not sufficient.
Proof:
Let € > 0,dN > 0 such that N <n <m.

len + -+ em| <€
Take m = n.
len| < €
= limg o0 . = 0)
1 — 2 is trivial.
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Finally, Comparison Test

Let 0 < ap < bg,Vk > 0.

If Y02, by converges, then Y 72 aj converges.

If 302, ai diverges, then Y .- by, diverges.

(Exercise)

Power Series

Start with the most important example,

Let z € C, consider Y ;2 2", (cx = 2*) (Geometric Series)

Sy=1+4z+22 442N
28, = 2422 4 g N N
S, — 28, =1— N1
Suppose z # 1, S,, = 1*12_NZ+1
Suppose |z| < 1,limy_ o 2V T = 0.

Because |2Vl — 0] = 2V T = 2|V = 0 as N — oo.
Hence, if |z| < 1, then Y77 ) z* converges to L.
If |z| > 1, then
lek] = |25 = |2|* > 1,VEk
So ¢, /4 0.
Hence, Z?;O ¢ does not converge.
Summary:

9]
D
k=0

1
11—z

converges iff |z| < 1 and if so it converges to
General Power Series

Let zp € C be fixed. A power series centred at zg is a complex series of the form
> reock(z — 20)*, e € C,Vk, z € C. k non-ngeative integer.

Given a power series centred at zg, consider zy and ¢ for k > 0 as fixed. And
we want to ask for which z € C does this series converge (absolutely?)
Lemma:

Suppose > p—, ck(z1 — 20)F converges for some 21 # 2.

Then, the sum
Z cr(z — 20)"
k=0

converges absolutely, Vz € C such that |z — zg| < |21 — 20|
Proof:

Yoo crlz1 — 20)* converges, so the terms are bounded.
IM > 0 such that |ex (21 — 20)%| < M, Vk.
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p (2 — ZO)k

lex(z — 20)"| = |ex (21 — 20) (21— 20)F

k
zZ— 20

=M

21 — 20

z

Let r = [Z=22[ < 1 by hypothesis.

lek(z — zo)k\ < Mr*

> ko Mr* converges = M - - (r < 1)

1—r?
Hence, by Comparison Test,

oo
> len(z — 20)"]
k=0

converges.

24 March 9th

Let ¢, € C,Vk > 0,29 € C

o0
Z cr(z — 20)"
k=0

is called a complex power series centered at zg.
We are interested in which z € C does

o0
Z cr(z — zo)k
k=0

converge?

Converge absolutely?

The series always converges absolutely at z = 2y (center).
Last time: Lemma

Suppose Yo, ck(z — z0)* converges at some z1 # zp, then

o0

Z cr(z — zo)k

k=0

converges absolutely Vz such that |z — zg| < |21 — 20].

It follows from the Lemma, if Y, cx(z — 20)* diverges (does not converge) at
zo, then it diverges at all z such that |z — 29| > |22 — 20].

(Because if it did converge at z3, |23 — 29| > |22 — z0|) Then by the lemma, it
would converge absolutely at zs.
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Radius of Convergence
Theorem: Given a complex power series,

o0
Z cr(z — zo)k
k=0

centered at zg, there exists R € [0,00] such that if R = 0, then the series
converges only at z = 2

R = 400, then the series converges absolutely for all z € C.

If 0 < R < oo, then the series converges absolutely on D(zp; R) and diverges on
C\ D(z20; R), (|z — 20| > R)

And anything can happen on 9 (D(zo,R)) = {2 : |z — 20| = R} (It might
converge absolutely or converge but not absolutely or diverge)

R is called the radius of convergence.

D(zp; R) is called the disc of convergence.

Proof:

If the series converges only at zg, set R = 0. Suppose there exists z; # zg such
that the series converges at z1. Let R = sup{r > 0 : Series converges on D(zo,7)}
This is non-empty set of positive real numbers.

Supremum exists as an extended positive real number either 0 < R < oo or
R = +o0.

If R = +00, then the series converges absolutely for all z € C. Because if z € C,
there exists w € C, such that |z — zg| < |w — zo| and the series converges at w.
(Because R = 400)

So by lemma, the series converges absolutely at z.

Finally, suppose 0 < R < oc.

If |z — 20| > R, then the series does not converge because if it did, then by

the lemma, it would converge (absolutely) on D(zp; %_Zol), contradicting the
definition of R.

If |z — 20| < R, then by the definition of R as a supremum, the series converges

on D(zo; 7|Z_Z§|+R)
Hence, by the lemma, series converges absolutely at z.
Example:
o0
Z(z — 20)%, (e, = 1,Vk)
k=0

has radius of convergence R = 1
o0
> u
k=0

converges iff |w| < 1.

In this case, we have divergence on 9 (D(zp;1)).

Recall: The Ratio Test (Calculus 2)

Let >y, bk be a series of positive real numbers by, > 0,k > 0.
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Suppose A = limy o b’;% exists (As a finite real number)

Then if A < 1, the series converges.

If A > 1, the series diverges.

If A =1, the test is inconclusive. (Anything can happen).

We use the ratio test to prove the following theorem.

Theorem:

Let > oo (z — 20)" be a complex power series with ¢, # 0, Vk.

Suppose

Ck+1
cr

L = lim

k—o0

exists in [0, 00].

Then the power series has radius of convergence R = %

ielf L =0, then R = +4o0, if L = 400, then R = 0, if 0 < L < R, then
0<R= % < o0.

Proof: Suppose z # z.

Let by, = ‘ck(z — zo)k’ >0,Vk>0

bk+1 = Ck+1(z — Zo)k+1 = |Ck+1‘ |Z - ZO‘
b cx(z — 20)k |ex|
If limp_yoo | 2| = L
Then X\ = limy_, o blg:l =L |z— z]

By Ratio Test, series converge if A = L|z — 29| <1 <= [z — 20| < 1.
Diverges if A = L|z — z| > 1 <= |z — 20| > +.
(IfL=0,A=0forany z € C= R = +0)

If L =400, = +00, unless z = zg

Ratio Test still works.

Examples:

L Y o= (z = 1)F

(_1)k+1
(1)

Ck+1
Ck

lim

k—o0

=1

k—o0

zlim’

SoR=1=1

This series converges absolutely for all z such that |z —1| < 1 and diverges
if |z — 1| > 1 by the theorem.

In this example, we can say more.

yw=—(2—1),w" = (-1)F(z - 1*
Converges absolutely if |w| = |z — 1| < 1 and diverges if |w| > 1.
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So in this case we have divergence on boudnary.

If |w| = |z — 1] < 1, then we know

So by the theorem, R = 400
So this series converges absolutely for all z € C.

In fact, we will see next week that this converges to e?.

Uniform Convergence

This is a type of convergence for sequence of functions.

Let Q be a domain, let fi : & — C be a sequence of complex-valued functions
on €.

We say that (fy) converges pointwise to a function f : Q — Ciff Vz € Q, fx(z) —
f(z) as k — oo.

This means for any € > 0, there exists N € N, depending on both of ¢ and
z € Q, such that if k > N, then |fx(z) — f(2)] <e.

N = N(e, z2)

Example:

frz)=14+2+22+---+2F k>0.

lim fr(2) = f(2) =

k—oc0 1—=z2

iff |2| < 1.
N = N(e) definitely depends on z.

25 March 11th

Last time: S C C a subset.
fn:S—=C

functions n > 0 We say f, converges pointwise to f : S — C if f,(z) —
f(z),Vz € S.
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ie. given z € S and € > 0, there exists N = N(z,¢) € N such that n > N =
Fal2) = 1(2)] < e

Uniform Convergence

Let S C C be a subset.

Let f, : S — C,n > 0 be a sequence of functions.

We say that (f,) converges uniformly to a function f: S — C iff Ve > 0,3IN =
N(e) € N such that if n > N, then

|fn(2) = f(2)|e,Vz € S

(Same rate)

i.e. We can choose one N (given €) that works for every point in S.
Remark:

It could happen that (f,) does not converge uniformly to f on S, but does on
some proper subset S’ C S.

Basic idea is that uniform convergence preserves "nice properties”.
Remark:

If (fn) — f uniformly on S, then (f,,) — f pointwise.

Theorem:

Let © be domain, f, : 2 — C be a sequence of function continuous on 2.
Suppose (f,) converges uniformly to f: Q — C, then f is continuous on .
”Uniform limit of continuous functions is continous”.

Proof:

Let z € 1, we need to show that f is continous at zg.

Let € > 0,

By uniform convergence, there exists N € N such that if n > N, then

VM@—f@H<§NzeQ

1f(2) = f(20) = |f(2) = fu(2) + fu(2) = fu(20) + fa(z0) — f(20)]
<|f(2) = fa(2)] + [ fu(2) = fu(z0)| + [fn(20) — f(20)]

€

<G Hfa(E) = falzo)l + 5 0> N

Since f, is continuous, there exists § > 0 such that if |z — 2| < J.

Then |£u(2) — fu(z0)| < &-

So |z — 20| <6 =|f(2) — f(z0)] <e.

So f continuous at zg.

We will use this soon to show power series give continuous functions.

First, we consider interchange of uniform limit and complex line integral.
Theorem:

Let T be a curve in C. Let f,, : I' — C be a sequence of functions continous on
r.
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(So the line integral, [ f,(z)dz makes sense).

Suppose (fy,) converges unlformly to f: T'— C (By the previous theorem, f is
continuous on I, so [i. f(z)dz makes sense.)

Then

/ lim fn(z)dz:/f(z)dz: lim [ fn(2)dz

(Integral of uniform limit = limit of integrals)
Proof:
We need to show that given € > 0, there exists N € N such that n > N = then

\/fn dz—/f )dz| = |/ Fa(2) — f(2))d2| < €

Let L = Length (T") > 0.
By uniform convergence, exists N € N such that n > N, then

|fa(2) = f(2)] < %,Vzel“

By ML inequality,

\/ (fn(z 2))dz| < L

=€

Apply this to power series, let Y 7o cp(z — 20)* be a complex power series
centred at zg.

Suppose the radius of convergence R is positive, (include R = +00).

Let D = D(z20; R), (if R = 400, D = C), the series converges absolutely for all
z€D.

The sum gives a function f(z) = Y 7, cx(z — 20)",Vz € D

f:D — C, f(z) is the limit of the partial sums.

z) = ch(z —z)¥
k=0

all polynomials hence continous on D, (in fact, continous on C)

Theorem:

For any 0 < p < R, the sequence f, of partial sums converges uniformly to f
on the D(zp; p).

Remark:

In general, (f,,) does not converge uniformly to f on D = D(zp; R). But this
theorem says that it always does on D(zp; R) if 0 < p < R.

Before we prove this, we need a lemma:

Lemma: Weierstrass M-test
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Let S C C be a subset, let f,, : S — C be sequence of functions. Let M, > 0
such that
|fa(z)| S M Vze S

If Y°0° , M, converges, then > >~ f,(z) converges absolutely and uniformly on
S.

Proof:

Let € > 0, there exists N such that m > n > N, then

My, 4+ My, < €

Then,
[fn(2) - 4 ()] < ()] -+ [ fn(2)]

Gives uniform convergence.

SMn++Mm<€

Gives absolute convergence.

Proof of Theorem:

Let 0 < p < R, let z; € D such that g < |21 — 20| < R.

Series converges (absolutely) at z;, so the terms are bounded.
There exists M > 0, such that |cj (21 — 20)*| < M,Vk

Let z € D(zo; p).

|z — 20| < p.
k
k k) (2 — 20)
cr(z — 20)"| = |ew(z1 — 20)° || ——5
eulz = 20)*] = lew(er = )1
Y
gM)Z ZO‘ ngkWherer:L<1
21— %0 |21 — 20|
Since r < 1,
(oo}
S e
k=0
converges.
So by Weierstrass M-test. (M, = Mr™)
We get that

o0
Z cr(z — zo)k
k=0

converges absolutely and uniformly for all z € D(2p; p).

Corollary: Let f(2) =Y pe ck(z — 20)F where z € D = D(z0; R)

Then f is continuous at z.

Proof:

Let z € D, choose p > 0 such that |z — 20| < p < R, z € D(20;p) C D(z0;p)

By the previous result, f,,(z) = Y=, cx(2—20)* (Continuous) converges uniformly
(and absolutely) on D(zo; p).
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Hence, f(z) = lim,,— o fn(2) is continuous at z.

On the assignment, we will show an example that Y.~ cx(z — 29)* does not
have to converge uniformly on D(zg; R).

Next time: We will show power series are analytic on D(zp; R).

26 March 13th

Theorem:

Let f, :  — C be a sequence of analytic functions on a domain €2, suppose
(fn) converges uniformly to f: Q — C on Q.

Then f is analytic on €.

(” Uniform limit of analytic functions is analytic”)

Proof:

Let zg € 2. We want to show that f is analytic at zg.

This is equivalent to showing that f is analytic on an open disc D = D(zp;€) C
Q.

Let I' be a Jordan curve in D.

/ fn(2)dz = 0,Yn
T

By the Cauchy Integral Theorem because I' U int(T") C D.
frn analytic on D.

Now, (f,) converges to f uniformly.

Thus,

Ozéfn(z)dz%[‘f(z)dZZO

/ f(z)dz=0

r

For any Jordan curve I' in D.

By Morera’s Theorem, f is analytic on D.

Corollary:

A complex power series > p  cx(z — 20)F = f(2) defines an analytic function
on its open disc of convergence D(zo; R).

Proof:

The partial sums f,,(z) = > ,_, ck(z — 20)" are polynomials, hence analyticon
D(zp; R). (in fact on all of C)

Every z € D is an interior point of a closed subdisc D(zp;p) € D(z0; R) on
which the convergence is uniform.

Remark:

The power series may also converge at some points on the boudnary of the
disc of convergence. But analyticity doesn’t even make sense since f(z) is not
defined on C\ D

Differentiation of power series
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Theorem:

Let f, : 2 — C be a sequence of analytic functions on €. Suppose that (f,)
converges uniformly to f : @ — C on each closed subdisc D in ©. Then
the sequence f] : 2 — C (converges uniformly) to f' : @ — C on each closed
subdisc D in Q.

Proof:

Let D = D(zp;€) C Q,r > 0.

Let T' = C(z0; 7 + d) be a circle of radius r + d centered at zg such that

D C D(z0;r +d) CQ

Let’s see why such a I' exists.
To see this, let z € 9D.
Since €2 is open, there exists €, > 0 such that

D(ze) €9

{D(z: =);= € 9D}

This is an open cover of 9D, which is compact. So there exists a finite subcover.
That is, there exists z1,..., 2y € 0D with €, = €., such that

Let d = ming_; (,..., %)
We claim,
D(zp;r+d) CQ

Let z € D(z0,7 + d) with [z — zo| > 7.
Let w be the point on D where ray from zy to z intersects.

|z —w| <d

w € 0D = w € D(z, %) for some k.

€ €
|z — 2zl < |z —w|+ Jw— 2| <d+ §§k+§k:€k

N

Hence, D(zp;r + d) C .

Proves this claim.

Back to the Proof of the Theorem.

Let € > 0, we need to show there exists N € N such that n > N then

/2 (Q) = f(Q)l <e¥CeD

(This says (f;,) — f" uniformly on D.
Let ( € D.
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Apply generalized Cauchy Integral Formula to the analytic function f, — f. We
get

1O =10 = 57 [ 2 e

For (€ Dand z €T, |z— (| >d.

1 1

— > Vzel D
EEER A

fal2) = f(2)
(z—¢)?

< ) 1)

By uniform convergence of (f,) to f on D, there exists N such that n > N,
then

e2rd?
|fn(2) = f(2)] < Length(T)
By ML inequality, if n > N.
€2 d?

! / 1
160 - 101> = (

= €

__PM ) Length(T
d2Length(r)> ength(T)

Corollary: Let f(z) = Y 72, ck(2—20)* be a complex power series with positive
radius of convergence. Then the complex power series

Z kep(z — z9)F 1
k=0

has the same disc of convergence D(zo; R). and it converges to f’(z) on D(zg; R).
i.e We can differentiate convergent power series term-by-term inside the open
disc of convergence D(zo; R).

Proof:

By previous result, f is analytic on D = D(zp; R). Hence, f’ exists and is
analytic on D.

fal2) = er(z = 20)
k=0

fh(z) = chkz(z —z)k !
k=0

Analytic on D.
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By previous theorem, f/ converges uniformly to f’ on any closed subdisc D of
But

n—0o0

lim f7(2) =Y keg(z — 20)"
k=0

The radius of convergence of > p-  kcg (2 — 20)F ! is therefore at least R.

We need to show that it’s not larger.

Let 2; satisfy |z1 — 29| > R. We need to show Y ;- keg(z — 2z9)"~! does not
converge at zj.

Let k € N such that k£ > |21 — 2| LI > 1.

? Jz1—20
len(z — 20)%| < |ker(z — 20)F 7Y, VE sufficiently large

By Comparison Test, the second series does not converge.
Summary:
Let ZEOZO cx(z — 20)* be a complex power series with positive radius of conver-

gence.
D = D(z0; R)

is the open disc of convergence.
e The series converges absolutely and uniformly on any closed subdisc of
D.
Let f(2) =Y g ck(z — 2z0)" for z € D.
We showed f is analytic on D.
We also showed that on D, f/(z) = Y77 keg(z — z0)" 1
Which has the same open disc of convergence.
Hence, convergent power series are analytic.

Next week: We show that analytic functions "are” convergent power
series.
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