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1 January 6th

We study differential and integral calculus of complex functions of complex
variables.
Replace R with C.

• C ∼= R2 = {(x, y)|x, y ∈ R}
x+ iy ⇐⇒ (x, y)

This necessarily involves calculus of functions of two real variables.
The results will be much richer and deeper when we define complex differentia-
bility.
We will see that notions like regularity, and analyticity are very different this
time.
We will see a ”unification” of close relationship of exponential and trigonometric,
hyperbolic functions.
We will see that questions of real variable calculus can be answered by passing
through the complex domain.
We will see close relationship between complex differentiable functions and har-
monic functions in two variables. (We will start here)
Prereq: Previous exposure to real analysis also multivariable calculus.
It includes:

• Double integrals,

• Partial derivative,

• Directional derivative,

• Gradient,

• Chain rule.
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1.1 Topology of R2

R2 = {(x, y)|x, y ∈ R2}
is two-dimentional real vector space.
Dot product also called Euclidean inner product.

z1 = (x1, y1)

z2 = (x2, y2)

z1 · z2 = x1x2 + y1y2

z = (x, y)

|z|2 = z · z = x2 + y2 ≥ 0

with equality when z = (0, 0)

|z| =
√

(x2 + y2)

Distance from 0 to z.
Cauchy-Schwarz Inequality

|z · w| ≤ |z| · |w|
with equality when z, w are linearly dependent.
Pictures here.
Distance from z0 to z is |z − z0| =

√
(x− x0)2 + (y − y0)2

Triangle Inequality

|z − w| ≤ |z − u|+ |u− w|
Pictures here.
Define: Let z0 = (x0, y0) ∈ R2. Let ε > 0.

D(z0; ε) = {z ∈ R2 : |z − z0| < ε}
called the open disc of radius ε centered at z0.
Define:

D(z0; ε) = {z ∈ R2 : |z − z0| ≤ ε}
closed disc of radius ε centered at z0

Define:
Let Ω ⊆ R2 be a subset.
Let z ∈ Ω.
We say z is an interior point of Ω if ∃ε > 0 such that D(z; ε) ⊆ Ω
Define:
Ω ⊆ R2 is an open set if every point in Ω is an interior point of Ω.
Remarks:
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1. ∅ is open.

2. R2 is open.

3. An open disc is an open set.

4. A closed disc is not an open set.

Example:

Ω = D(z0; ε) \ {z0}

is called a punctured disc.
Facts: (Exercise)

1. If Ω1,Ω2 are open ⇒ Ω1 ∩ Ω2 is open.

Hence any finite intersection of open sets is open.

2. If Ωα is open ∀α ∈ A, then
⋃
α∈A Uα is open. (A can be uncountable.)

Connectedness
Definition from Topology by Munkres:
Let X be a topological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be
connected if there does not exist a separation of X.
Another way of formulating the definition of connectedness is the following:
A space X is connected if and only if the only subsets of X that are both open
and closed in X are the empty set and X itself.
Definition:
Let E ⊆ R2.
We say that E is disconnected if ∃ open sets Ω1,Ω2 ⊆ R2 such that E ∩ Ω1 6=
∅, E ∩ Ω2 6= ∅.
E ∩ Ω1 ∩ Ω2 = ∅
E = (E ∩ Ω1) ∪ (E ∩ Ω2)
Informally, E is disconnected if it is ”made up of more than one piece”.
We say E is connected if it is not disconnected.
Fundamental Fact:
Let f : E → R be continuous on E.
If E is connected, then f(E) = {f(z) : z ∈ E} is an interval.
Corrolary: Intermediate Value Theorem.
Suppose f : E → R is continuous on E and E is connected.
Let z1, z2 ∈ E.
Let f(z1) = t1, f(z2) = t2.
∀t between t1, t2 ∃z ∈ E such that f(z) = t.
Define:
A domain Ω in R2 is an non-empty open connected set.
Theorem:
Let Ω ⊆ R2 be open (non-empty) then TFAE
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1. Ω is connected

2. Any pair of points in Ω can be linked by a path made of a finite number
of straight line segments each lying entirely in Ω

Equivalence!!!
Proof:
Let z0 ∈ Ω.
We want to show S = Ω.
Claim: S is open.
Let z ∈ S. Since S ⊆ Ω, z ∈ Ω.
Ω is open, so ∃ε > 0 such that D(z, ε) ⊆ Ω.
Hence for any w ∈ D(z : ε), ∃ a straight line from z to w.
So ∃ a piecewise linear path from z0 to w.
So w ∈ S.
Hence D(z, ε) ⊆ S.
S is open.
Claim:
Ω \ S is open suppose w ∈ Ω \ S.
Since w ∈ Ω, and Ω is open, ∃ε > 0 such that D(w, ε) ⊆ Ω.
If D(w, ε) ∩ S 6= ∅, then ∃ piecewise linear path from z0 to a point in D(w, ε)
and hence to w, contradicting w /∈ S.
Hence, D(w, ε) ∩ S = ∅.
So D(w, ε) ⊆ Ω \ S.
Hence Ω \ S is open.
E : Ω.
Ω1 = S open.
Ω2 = Ω \ S is open.
Ω1 ∩ E = S 6= ∅.
Ω2 ∩ E = Ω \ S.
E = Ω = Ω1 ∪ Ω2.
But Ω is connected.
So at least one of Ω1,Ω2 empty.
But S 6= ∅. So Ω \ S = ∅ ⇒ Ω = S.
This proves (1)⇒ (2).
(2)⇒ (1) (Sketch)
Suppose (2) holds but Ω is not connected.
Let Ω1,Ω2 be a disconnection of Ω.
Ω1 ∩ Ω2 = ∅
Ω = Ω1 ∪ Ω2

Ω1,Ω2 6= ∅.
∃z ∈ Ω1, w ∈ Ω2.
2 ⇒ ∃ piecewise linear path from z to w. α : [0, 1] → R2 continuous, α(0) =
z, α(1) = w.
⇒ α([0, 1]) is connected.
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2 January 8th

Continue from last time.
Assume 2 holds, but Ω is not connected. Then, ∃ open subsets Ω1,Ω2 of R2

such that Ω1 6= ∅,Ω2 6= ∅,Ω1 ∩ Ω2 = ∅,Ω = Ω1 ∪ Ω2

Picture here.
∃ a piecewise linear path from z1 to z2 lying entirely in Ω.
Hence, ∃ a continuous map, α : [0, 1]→ R2 such that α(t) ∈ Ω∀t ∈ [0, 1]
and α(0) = z1, α(1) = z2.
E = α([0, 1]) is connected subset of R2.

E ∩ Ω1 6= ∅, E ∩ Ω2 6= ∅, E ∩ Ω1 ∩ Ω2 = ∅

Hence, Ω1,Ω2 give a disconnection of E.
Contradiction
So Ωis connected.
Recall
A domain is a connected open subsets of R2.
Corollary:
We have lots of domains.
Examples:
Any open convex set is a domain.
Hence, an open disc D(z; ε) is a domain.
A punctured open disc D(z; ε) \ {z} is a domain.
An annulus, {z ∈ R2, R1 < |z − z0| < R2} for R2 > R1 > 0 is a domain.
Boundedness
Definition:
A subset E of R2 (need not be open) is called bounded if ∃ R > 0 such that

E ⊆ D(0;R)

(The location of the disc is irrelevant) Example:

|z| ≤ R,∀z ∈ E

(A bounded set doesn’t ”go off to infinity”)
Definition:
E ⊆ R2 is called closed if R2 \ E is open.
⇒ arbitrary intersections of closed sets are closed.
⇒ finite unions of closed sets are closed.
In general a subset need not be open nor closed.
Definition:
E ⊆ R2 is compact if it is closed and bounded.
(Heine-Borel Theorem)
Fundamental Fact:
The continuous image of a compact set is compact.
Corollary:
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Extreme Value Theorem
Let f : E ⊆ R2 → R be continuous on E and suppose E is conpact. Then f
attains a global max and global min on E
Example:

∃z1, z2 ∈ E such that f(z1) ≤ f(z) ≤ f(z2)∀z ∈ E

Boundary of a set
Definition:
Let E be a subset of R2.
A point z ∈ R2 is called a boundary point of E iff

∀ε > 0, both D(z; ε) ∩ E 6= ∅ and D(z; ε) ∩ (R2 \ E) 6= ∅

(i.e z is a boundary point of E iff any open neighbourhood of z contains both
points in E and points not in E)
Example:
E = D(w; r)
The boundary points of E are the points z ∈ R2 such that |z − w| = r
None of the boundary points are in the set.
D(W ; r) = {z ∈ R2, |z − w| ≤ r}
The boundary points of this set are the same as the previous example.
All the boundary points are in the set.
Picture here.
Some of the boundary points are in the set.
Clear:
A subset E is

1. Open iff it contains non of its boundary points

2. Closed iff it contains all of its boundary points

Definition:

∂E = {z ∈ R2 : z is a boundary point of E}

is called the (topological) boundary of E.
Notice:

∂E = ∂
(
R2 \ E

)
Boundary has nothing to do with boundedness.
Example:

Ω = {(x, y) ∈ R2 : y > 0}

”The upper half plane”

∂Ω = {(x, 0) : x ∈ R}

x - axis.
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But is not bounded.
Curves in R2

Definition:
A smooth curve in R2 is a map

α : [a, b]→ R2

such that
α(t) = (α1(t), α2(t))

1. α is C1 or [a, b] (continuously differentiable)

i.e
α1 : [a, b]→ R, α2 : [a, b]→ R

are continuous differentiable and their derivatives α′1, α
′
2 are continuous

on [a, b]

(Use one-sided limits at end points)

2. α′(t) = (α′1(t), α′2(t)) 6= (0, 0)∀t ∈ [a, b]

α′(t) is called the velocity vector of the curve α at α(t)
Example:

α(t) = (R cos(t), R sin(t)), t ∈ [0, 2π], R > 0

α′(t) = (−R sin(t), R cos(t))

|α′(t)| = R > 0

γ(t) = (x0 +R cos t, y0 +R sin t)

= circle of radius R centered at (x0, y0)

Example:
α(t) = (R cos(2π − t), R sin(2π − t)), 0 ≤ t ≤ 2π
”Opposite direction”
Example:
α(t) = (R cos t, R sin t), t ∈ [0, 4π]
”Same” as example 1, but travels aroudn the image twice.
So it is a different curve.
Example:
α(t) = (R cos(2t), R sin(2t)), 0 ≤ t ≤ π
Same image as all the others, same ”orientation” as the examples 1, 3. Only
goes around once like example 1.
But it goes around twice as fast.
So, it is a different curve.
We need a slight generalization!
Definition:
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A piecewise-smooth curve in R2 is a continuous map α : [a, b] → R2 and a
decomposition a = t0 < t1 < · · · < tN−1 < tN = b such that αi := α|[ti,ti+1],
[ti, ti+1]→ R2 is a smooth curve ∀i = 0, 1, . . . , N > 1
Note:
Continuity says

αi(ti+1) = αi+1(ti+1)

From now on, a curve means a piecewise-smooth curve.
Definition:
A curve, α : [a, b]→ R2 is called simple is α|(a,b) is one-to-one.
i.e α(t1) 6= α(t2) except possibly for t1 = a, t2 = b
(Example 3 where we traverse the circle twice is not simple.)
Definition:
α : [a, b]→ R2 is called closed if α(a) = α(b).
(final point equals initial point)
Examples:
Pictures here.

3 January 10th

Length of a (piecewise smooth) curve
Let α be a curve,

α[a, b]→ R2

Define:
The length of α is

L(α) =

∫ b

a

|α′(t)| dt

α is continuous. L(α) > 0 since |α′(t)| > 0,∀t ∈ [a, b]
Example:

α(t) = (R cos t, R sin t) , 0 ≤ t ≤ 2π

α′(t) = (−R sin t, R cos t)

|α′(t)| = R

L(α) =

∫ 2π

0

R dt = 2πR

Definhition:
A reparametrization of a curve α : [a, b] → R2 is a bijective continuous map
h : [c, d]→ [a, b] such that

1. h is piecewise-smooth
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2. either

{
t = h′(s) > 0 ∀s ∈ [c, d] Orientation (direction) preserving

t = h′(s) < 0 ∀s ∈ [c, d] Orientation reversing

So that α̃ : [c, d]→ R2 by

α̃(s) = α(h(s)),∀s ∈ [c, d]

then
α̃ : [c, d] → R2 is a piecewise-smooth curve whose image is the same as α and
that passes through each point in the image the same number of times as α and
in

1. (2a) Same direction

2. (2b) Opposite direction

Chain Rule:

α̃′(s) = α′(h(s))h′(s)

so α̃ is picewise smooth.

1. h(c) = a, h(d) = b

2. h(c) = b, h(d) = a

Picture here.
Proposition:
Let α̃(s) = α(h(s)) be a reparametrization of α, then L(α̃) = L(α)
t = h(s)
Proof:

α̃′(s) = α′(h(s))h′(s)

|α̃′(s)| = |α′(h(s))||h′(s)|

9



L(α̃) =

∫ d

c

|α̃′(s)| ds

=

∫ d

c

|α′(h(s))||h′(s)| ds

(2a) =

∫ d

c

|α′(h(s))| dt
ds

ds

=

∫ b

a

|α′(t)| dt

= L(α)

= (2b)−
∫ d

c

|α′(h(s))| dt
ds

ds

= −
∫ b

a

|α′(t)| dt

= L(α)

Theorem:
Reparametrization by arclength
Let α : [a, b]→ R2 be a curve. Let L = L(α) > 0
∃1 orientation preserving reparametrization

h : [0, L]→ [a, b](h′(s) > 0,∀s ∈ [0, L])

such that α̃ = α · h has unit speed

|α̃′(s)| = 1 ∀s ∈ [0, L]

Suppose we had this

s0 ∈ [0, L]∫ s0

0

|α̃′(s)| ds = length of α̃|[0,s0] =

∫ s0

0

1 ds = s0

So s0 ∈ [0, L] is the length of α̃(0) = α(a) to α̃(s0) = α(h(s0)).
Proof:
First, suppose α is smooth, let L = L(α) =

∫ b
a
|α′(t)| dt

We seek a function
h : [0, L]→ [0, b]

bijection such that

α̃(s) = α(h(s))

has unit speed.
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t = h(s)

s = h−1(t) = f(t)

Length of the curve from α(0) = ˜α(0) to α̃(s) = α̃f(t) = α(t)
f = h−1 : [a, b]→ [0, L]
Hence

f(t) =

∫ t

a

|α′(u)| du

f(a) = 0

f(b) = L = Length(α)

Note: |α′(u)| is continuous.
So by Fundamental Theorem of Calculus, f(t) is differentiable.

f ′(t) = |α′(t)| > 0,∀t ∈ [a, b]

So by Calculus I,
There exists an inverse function h = f−1 such that f(h(s)) = s,∀s (Differen-
tiable with respect to s).

f ′(h(s))h′(s) = 1

h′(s) =
1

f ′(h(s))

=
1

f ′(t)
=

1

|α′(t)|

h(f(t)) = t, ∀t

and h is C1 on [a, b].
Set α̃(s) = α(h(s)).

α̃′(s) = α′(h(s))h′(s)

= α′(t)
1

|α′(t)|

Hence |α̃′(s)| = 1,∀s
We have proved it for smooth curves.
Suppose α is piecewise smooth

a = t0 < t1 < t2 < · · · < tn−1 < tN = b

αi = α|[ti,ti+1]

is smooth i = 0, . . . , N − 1
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Let hi be the ”h” for αi define h by

h(s) = h0(s), 0 ≤ s ≤ L(α0)

= L(α0) + h1(s), L(α0) ≤ s ≤ L(α0) + L(α1)

etc.
Exercise:

α(t) = (R cos t, R sin t) , t ∈ [0, 2π]

We want to reparametrize by arclength

s = f(t) =

∫ t

0

|α′(u)| du = Rt

t =
s

R

α̃(s) =
(
R cos

( s
R

)
, R sin

( s
R

))
0 ≤ s ≤ 2πR

From now on we can WLOG assume that any curve is paramerized by arclength.
Define:
A Jordan curve is a curve α : [a, b] → R2 that is simple and closed. t1 <
t2, α(t1) 6= α(t2), α(a) = α(b)
Theorem:
Jordan curve Theroem
Let α : [a, b]→ R2 be a Jordan curve with image Γ = α ([a, b]).
Then R2 \ Γ consists of two disjoint domains.
One of which is bounded (called ”inside”) and the other is unbounded (called
”outside”). Each domain has Γ as its boundary.
If a point inside Γ is joined to a point outside Γ by a curve, then that curve
must intersect Γ.
We won’t prove this. It is intuitively clear but requires some algebraic topology
to prove. (PMATH 365)
Definition:
Jordan Domain
A Jordan domain is a bounded domain (open + connected) Ω such that its
boundary is the union of finitely many images of Jordan curves.
We choose to orient each of these Jordan curves so that as we traverse the curve
in the direction of its orientation, the Jordan domain Ω lies on left side.
Picture here.
0-connected
1-connected
3-connected
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4 January 13th

Outward normal vector field N to a curve
Let Ω be a Jordan domain with boundary ∂Ω.
Let Γ be one of the Jordan curves in ∂Ω, without loss of generality, let Γ be
paramerized by arclength.

α(s) = (α1(s), α2(s)) , s ∈ [0, L], L = Length(α)

T (s) = α′(s)

= (α′1(s), α′2(s))

= unit tangent vector field to α

|T (s)| = |α′(s)| = 1

Definition:
The outward unit normal vector field N to α is defined to be

N(s) = (α′2(s),−α′1(s))

|N(s)| = 1,∀s ∈ [0, L]

By our choice, N is pointing outward at all points on Γ.
Examples:
α(s) =

(
R cos

(
s
R

)
, R sin

(
s
R

))
, 0 ≤ s ≤ 2πR

T (s) = α′(s) =
(
− sin

(
s
R

)
, cos

(
s
R

))
N(s) =

(
cos
(
s
R

)
, sin s

R

)
Picture example.
Read 1.3 on your own.
The outward normal derivative
Let Ω be the Jordan domain, let z0 ∈ ∂Ω.
Let N(z0) be the outward pointing unit normal vector.
Picture here.
Let W be an open set in R2. Such that

W ⊆ Ω ∪ ∂Ω = Ω

Let u ∈ C1(W ), u ·W ⊆ R2 → R, continuously differentiable, ux, uy ∈ C0(W ).
Definition:

∂u

∂n
(z0) := DN(z0)u = (∇u) (z0) ·N(z0)

DN(z0)u: Directional derivative of u at z0 in N(z0) direction.
Example: Assignment 1
If α(s) =

(
R cos

(
s
R

)
, R sin s

R

)
13



Then:
∂u

∂n
(z0) =

∂u

∂r
(z0)

Picture here.
This is the partial derivative of u at z0 with the polar coordinates r.
The Laplacian Let W ⊆ R2 be open.
Let u ∈ C2(W ).

uxx, uxy = uyx, uyy ∈ C0(W )

Then we define the Laplacian of u, denoted ∆u, by

∆u = uxx + uyy ∈ C0(W )

Define: u ∈ C2(W ) is called harmonic on W if ∆u = 0 on W .
In Chapter 2, we will see harmonic functions have very nice properties and
closely related to complex analysis.
1.4.1 Line integrals of vector fields
Define:
Let Ω ⊆ R2 be open.
A vector field F on Omega is a map

F : Ω ⊆ R2 → R2

F (x, y) = (P (x, y), Q(x, y))

P,Q : Ω ⊆ R2 → R

We say F is a Ck vector field on Ω iff both P,Q ∈ Ck(Ω).
We always assume F is at least C0 vector field.
Exercise 1

F (x, y) = (−y, x)

Ω = R2

Exercise 2

G(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
,Ω = R2 \ {(0, 0)}

Let α : [0, h]→ R2 be a curve in R2 suppose Im(α) ⊆ Ω.
Let F be a C0 vector field on Ω.

α(t) = (α1(t), α2(t)) = (x(t), y(t)), a ≤ t ≤ b

Let α : [a, b]→ R2 be a curve in R2. Suppose Im(α) ⊆ Ω.
Let F be a C0 vector field on Ω.
Definition:
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The line integral of the vector field F along the curve α is defined to be∫
α

F ·dr :=

∫ b

a

F (α(t))·α′(t) dt =

∫ b

a

P (x(t), y(t))x′(t) dt+

∫ b

a

Q(x(t), y(t))y′(t) dt

Notation:
The authour writes ∫

α

(Pdx+Qdy)

Examples:

α(t) = (R cos(t), R sin(t)), 0 ≤ t ≤ 2π

∫
α

F · dr

See pictures.

F (α(t)) = (−R sin t, R cos t)

α′(t) = (−R sin t, R cos t)

F (α(t)) · α′(t) = R2∫
α

F · dr = 2πR2

∫
α

G · dr

G(α(t)) = (cos(t), sin(t))

α′(t) = (−R sin t, R cos t)

G(α(t)) · α′(t) = 0∫
α

G · dr = 0

Proposition:∫
α
F · dr is independent of reparametrization of α as long as the orientation is

presented.
Proof:
Let α̃(s) = α(h(s)), 0 ≤ s ≤ d be a reparametrization.

α̃′(s) = α′(h(s))h′(s)

Chain rule ∫
α

F · dr =

∫ b

a

F (α(t)) · α′(t) dt
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Let t = h(s)

t = a ⇐⇒ s = c

t = b ⇐⇒ s = d

(Orientation preservirs)
dt = h′(s)ds

=

∫ d

c

F (α(h(s))) · α′(h(s))h′(s) ds

=

∫ d

c

F (α̃(s)) · α̃′(s) ds

=

∫
α̃

F · dr

From the proof, it is clear that∫
−α

F · dr = −
∫
α

F · dr

So because of this proposition, WLOG we can assume (if necessary) that α is
parametrized by arclength (only its orientation matters).
What is the geometric / physical meaning of

∫
α
F · dr? Assume α is unit speed.∫

α

F · dr =

∫ b

0

F (α(s)) · α′(s) ds

Component of F along the unit tangent vector field.

T (s) = unit vector field along α

This clarifies the two examples.

5 January 15th

Green’s Theorem and Green’s Identities
This is the basic tool that will imply most of the big results in this course.
Theorem:
Let Ω be a k-connected Jordan domain and let F (x, y) = (P (x, y), Q(x, y)) be
a C1 vector field on a domain Ω+ which contains Ω and ∂Ω.
Then ∫

∂Ω

F · dr =

∫∫
Ω

(Qx − Py) dA

Picture here.
Proof:
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We will prove it for a rectangle and then explain how the general case follows
from that.

F (x, y) = (P (x, y), Q(x, y))

On curve (1),
α(t) = (t, c), a ≤ t ≤ b

α′(t) = (1, 0)

F (α(t)) = (P (t, c), Q(t, c))

∫
(1)

F · dr =

∫ b

a

P (t, c) dt

∫
(3)

F · dr = −
∫ b

a

P (t, d) dt

Or (2)
α(t) = (b, t), c ≤ t ≤ d

α′(t) = (0, 1)

F (α(t)) = (P (b, t), Q(b, t))

∫
(2)

F · dr =

∫ d

c

Q(b, t) dt

∫
(4)

F · dr = −
∫ d

c

Q(a, t) dt

∫
∂Ω

F · dr =

∫ b

a

P (t, c) dt−
∫ b

a

P (t, d) dt+

∫ d

c

Q(b, t) dt−
∫ d

c

Q(a, t) dt

∫∫
Ω

(Qx − Py) dA =

∫∫
Ω

Qx dA−
∫∫

Ω

Py dA

=

∫ d

c

∫ b

a

∂Q

∂x
dx dy − ...

Green’s Theorem is true for rectangles.
General Case:
Pictures here.
Green’s Identities
Consequence of Green’s Theorem
We first need some notation.
For the rest of the lecture, Ω is a k-connected Jordan domain, and Ω+ is a
domain containing Ω ∪ ∂Ω = Ω, u, v ∈ C2(Ω+), u, v : Ω+ → R.
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Definition:
We want to define

∫
∂Ω

∂u
∂n ds

It is also the line integral along ∂Ω of the vector field (−uy, ux) which ∇u =
(ux, uy) rotated 90 degrees counterclockwise
∂u
∂n : Outward notmal derivative of u on ∂Ω.
as follows

F (x, y) = (−uy, ux)

is a C1-vector field.
Let α : [0, 1]→ R2 be the arclength parametriaztion of ∂Ω.∫

α

F · dr =

∫ L

0

F (α(t)) · α′(t) dt =

∫ L

0

(−uyx′ + uxy
′) dt

=

∫ L

0

(ux, uy) (y′,−x) dt

=

∫ L

0

(∇u)α(t) ·N(t) dt

=

∫ L

0

∂u

∂n
(t) dt

If f ∈ C2(Ω+), then∫
∂Ω

f
∂u

∂n
ds = line integrals of (−fuy, fux)

Green’s Identity #1∫∫
Ω

(∇u) · (∇v) dA =

∫
∂Ω

u
∂v

∂n
ds−

∫∫
Ω

u∆v dA

Proof:
We will explicitly evaluate the

∫
∂Ω

term.
... See picture.
Green’s Second Identity∫

∂Ω

(
v
∂u

∂n
− u∂v

∂n
ds =

∫∫
Ω

(v∆u− u∆b) dA

)
Proof:
Interchanging u and v in 1st identity and take difference.
Corollary: Inside-Outside Theroem∫

∂Ω

∂v

∂n
ds =

∫∫
Ω

∆v dA

Lemma:
Let z0 = (x0, y0) ∈ R2 be fixed.
Let z = (x, y) be variable point.
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Define r(z) = r(x, y) = |z − z0| =
√

(x− x0)2 + (y − y0)2

log r is harmonic on R \ {z0}.
Proof:
Calculate (log r)xx + (log r)yy = 0
See picture.
Green’s Third Identity
Fix z0 ∈ Ω, r(z) = |z − z0|.

u(z0) =
1

2π

∫∫
Ω

log rδu dA− 1

2π

∫
∂Ω

(
log r

∂u

∂n
− u ∂

∂n
(log r)

)
ds

Remark:
This is remarkable. It says that given knowledge of u and ∂u

∂n on ∂Ω and δu in
Ω, it determines u inside Ω.
Proof:
Let ε > 0, such that D(z0), ε ⊆ Ω.
We can do this by taking ε sufficiently small.
Apply Green’s Second Identity to Ω \D(z0, ε) . . .
See pictures.

6 January 17th

From last time:
Green’s Theorem.
Ω k-connected Jordan domain. Ω+ domain such that Ω+ ⊇ Ω ∪ Ω.
Let u ∈ C2(Ω+), r = |z − z0|

u(z0) =
1

2π

∫∫
Ω

(log r)∆u dA− 1

2π

∫
∂π

(log r)
∂u

∂n
− u ∂

∂n
(log r) ds

Inside-Outside Theorem∫
∂Ω

∂u

∂n
ds =

∫∫
Ω

(∆u) dA

Recall:
If W is an open set, u ∈ C2(W ), we say that u is harmonic on W if ∆u =
uxx + uyy ∈ C0(W ) = 0 on W .
Examples:

1. u(x, y) = Ax+By + C: Graph of u is a plane in R3

2. u(x, y) = x2 + y2, uxx = 2, uyy = −2, ∆u = 0

3. u(x, y) = xy, uxx = uyy = 0

4. u(x, y) = ex cos y, uxx = ex cos y, uyy = −ex cos y,∆u = 0

19



We will soon see how the examples are related to complex differentiable func-
tions.
Clear:
Any linear combination of harmonic functions on W is again harmonic on W
because ∆ : C2(W )→ C0(W ) is a linear map.
Harmonic functions on W = Ker(∆)
So harmonic functions on W are a real vector space (it is infinite-dimensional)
Theorem:
Suppose ∗ holds, let u ∈ C2 (Ω+) be harmonic on Ω+

Let z0 ∈ Ω, then ∫
∂Ω

∂u

∂n
ds = 0

u(z0) = − 1

2π

∫
∂π

(log r)
∂u

∂n
− u ∂

∂n
(log r) ds

Remarks:
(A) says that for a harmonic function, the ”net flux” across the entire boundary
is zero.
(B) says that a harmonic function is determined by its boudnary behaviour.
(Knowledge of u, dudn on ∂Ω determines u inside ∂Ω)
Read 2.2 for physical interpretation.
A characterization of Harmonicity
Theorem:
Let W be a domain, u ∈ C2(W ).
Then u is harmonic on W if and only if for every Jordan curve, Γ, inside W ,
whose interior lies inside W , we have

∫
Γ
∂u
∂n ds = 0

Proof:
We already know 1) implies 2).
Picture here.
Conversely, suppose 2) holds. We need to show ∆u = 0 on W . Suppose not
∃z0 ∈ W such that ∆u(z0) 6= 0 by possibly replacing u by −u, we can assume
(∆u) (z0) > 0.
But ∆u ∈ C0(W ), so ∃ε > 0 such that (∆u) (z) > 0,∀z ∈ D(z0, ε) ⊆W .
Then Γ = ∂Ω = C(z0, ε) = {z : |z − z0| = ε}

0 =

∫
∂Ω

∂u

∂n
ds =

∫∫
Ω

(∆u) dA > 0

Contradiction.
Aside: Differentiation under integral sign
Let R = {a ≤ s ≤ b, c ≤ t ≤ d} be a rectangle in s− t plane.
Suppose F (s, t), Ft(s, t) are continuous on an open set containing R.
Then, ∫ b

a

F (s, t) ds
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is a differentiable function of t on a < t < b and

d

dt

∫ b

a

F (s, t) ds =

∫ b

a

Ft(s, t) ds

Proof:
Define f(t) =

∫ b
a
F (s, t) ds, g(t) =

∫ b
a
Ft(s, t) ds

We want to show that f is differentiable on (a, b) and f ′(t) = g(t)

∫ τ

c

g(t) dt =

∫ τ

c

∫ b

a

Ft(s, t) ds dt

=

∫ b

a

∫ τ

c

Ft(s, t) dt ds

=

∫ b

a

F (s, τ)− F (s, c) ds

= f(t) + constant

Take d
dt use FTC.

g′(τ) = f(τ)∀τ ∈ (a, b)

Corollary:
Let Ω be a domain in R2, u ∈ C2(Ω) harmonic on Ω.
Then in fact u ∈ C∞ (Ω)
Proof:
(Theorem B):
If (x, y) ∈ Ω

u(x, y) = − 1

2π

∫
∂D

(
log r

∂u

∂n
(α(s))− u(α(s))

∂

∂n
(log r)

)
ds

When D is a disc centered at z0, with D = D ∪ ∂D ⊆ Ω, and α : [0, 1]→ R2 is
an arclength parametriaztion for ∂D.

α(s) = (x(s), y(s))

α′(s) = (x′(s), y′(s))

r(x, y, s) = |(x, y)− (α1(s), α2(s)) |

(x, y) /∈ ∂D

Keep differentiating as many times as your want. Using differentiation under
integral.
Mean Value Property of Harmonic Functions
Theorem: Circumferential Mean Value Theorem
Let u be harmonic in a domain Ω.
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Suppose D(z0, R) ⊆ Ω.
Then

u(z0) =
1

2πR

∫
C(z0,R)

u(z) ds =
1

2π

∫ 2π

0

u(R, θ) dθ

Polar coordinates centered at z0.
To see that these two are equal on C(z0, ε), arclength s = Rθ, ds = Rdθ, 0 ≤
θ ≤ 2π.
The left hand side says that the value of u at z0 equals the average of the values
of u on the circumference C(z0;R) of D(z0;R)
Proof:

1. We first show that the integral

1

2πR

∫
C(z0;R)

u(z) ds

is independent of R as long as D(z0, R) ⊆ Ω.

Let 0 < r ≤ R.

Let C(z0; r) be circle of radius r centered at z0 (counterclockwise).

Since u is harmonic on Ω, hy the characterization of harmonity,

0 =

∫
C(z0,r)

∂u

∂n
ds =

∫
C(z0,r)

∂u

∂r
ds =

∫ 2π

0

∂u

∂r
(r, θ)r dθ

= r

∫ 2π

0

∂u

∂r
(r, θ) dθ

= r
d

dr
[

∫ 2π

0

u(r, θ) dθ]

constant in r for 0 < r ≤ R

= 2πu(r, θ), 0 ≤ θr ≤ 2π

Take limit as r → 0.

=

∫ 2π

0

u(R, θ) dθ

lim
r→0

∫ 2π

0

u(r, θ) dθ

Limit as r → 0+

= 2πu(r, θr)

= 2πu(z0)

by the continuity of u.
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7 January 20th

From last time:
Let Ω be a Jordan domain.
Let Ω+ be domain, Ω+ ⊆ Ω ∪ (∂Ω).

• Suppose u ∈ C2 (Ω+) is harmonic on Ω+

Let z0 ∈ Ω

u(z0) = − 1

2π

(∫
∂Ω

log r
∂u

∂n
− i ∂

∂n
log r

)
ds

where r(z) = |z − z0|.

• u is harmonic of Ω+ iff ∫
∂Ω

∂u

∂n
ds = 0

(Net flux)

∀Ω Jordan domain with Ω ∪ ∂Ω ⊆ Ω+.

Theorem:
Circumferential Mean Value Property
Let u be harmonic in a domain Ω.
Suppose D(z0;R) ⊆ Ω
Then,

u(z0) =
1

2πR

∫
C(z0,R)

u(z) ds =
1

2π

∫ 2π

0

u(R, θ) dθ

.
Proof:
Second Proof:
Use result (1) with Ω = D(z0, R) on the boundary of Ω, ∂Ω = C(z0;R), r =
R = |z − z0| = Const

u(z0) = − 1

2π

∫
C(z0;R)

logR
∂u

∂n
− u 1

R
ds

(Constant on C(z0, R))

= − 1

2π
logR

∫
C(z0,R)

∂u

∂n
ds+

1

2π

∫
C(z0;R)

u ds

(The first term is 0 by 2)
Definition:
Let Ω be a domain.
Let u ∈ C2(Ω). We say u satisfies the circumferential MVP in Ω iff ∀D(z0;R) ⊆
Ω,

u(z0) =
1

2πR

∫
C(z0;R)

u ds
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So any harmonic function has the CMVP.
Theorem:
Let u ∈ C2(Ω) for a domain Ω.
Then (1) u has the CMVP on Ω iff (2) u is harmonic on Ω
Proof:
We already know (1) ⇒ (2).
Suppose (2) holds, let D(z0;R) ⊆ Ω.

u(z0) =
1

2π

∫ 2π

0

u(r, θ) dθ

Differentiate both sides with respect to r. (We know we can differentiate under
integral)
And multiply by r.

0 =
r

2π

∫ 2π

0

∂u

∂n
(r, θ) dθ

0 =

∫ 2π

0

∂u

∂n
(r, θ)r dθ =

∫
C(z0,r)

∂u

∂n
ds

Inside-outside theorem. ∫
D(z0,r)

∆u dA ∀D(z0; r) ⊆ Ω

⇒ ∆u = 0 on Ω

Theorem: Solid Mean Value Property
Let u be harmonic on a domain Ω. Let D(z0;R) ⊆ Ω.
Then

u(z0) =
1

πR2

∫∫
D(z0;R)

u dA

(Again, it says that the value of u at z0 equals the average mean value of u over
D(z0;R) ⊆ Ω)
Proof:
Let 0 < r ≤ R.

u(z0) =
1

2π

∫ 2π

0

u(r, θ) dθ

by CMVP.
Multiply both sides by r and integrate 0 ≤ r ≤ R∫ R

0

u(z0)r dr =
1

2π

∫ R

0

∫ 2π

0

u(r, θ)r dr dθ =
1

2π

∫ R

0

∫ 2π

0

u(r, θ) dA

R2

2
u(z0) =

1

2π

∫∫
D(z0;R)

u dA
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Theorem: (Strong Maximum Principle)
Let Ω be a domain in R2 [We do not assume that it is a Jordan domain nor
even that is bounded]
Let u be harmonic on Ω and non-constant.
Then u does not attain a global max nor a global min on Ω.
Proof:
By contradiction. Suppose u has a global max at z0 ∈ Ω. That means u(z) ≤
u(z0) = c ∀z ∈ Ω.
Let U = {w ∈ Ω;u(w) < c}.
This is non-empty because u is non-constant.
and open since u is continuous.
Let E = {w ∈ Ω, u(w) = c}. Non-empty z0 ∈ E

Ω = U ∪ E

since u(w) ≤ c ∀w ∈ Ω
Hence, E cannot be open, because if it was, it would give a disconnection of Ω.
(Ω is connected ).
So E contains at least one of its boudnary points.
That is, there exists z ∈ E, u(z1) = c such that ∀ε > 0, D(z1; ε) ∩

(
R2 \ E

)
= ∅

Take ε sufficiently emall so that D(z1, ε) ⊆ Ω (Since Ω is open).
There exists ζ ∈ D(z1; ε) such that ζ ∈ U, u(ζ) < c

|ζ − z1| = R < ε

Since u is continuous, and u(ζ) < c. There exists a whole ark of the circle
C(z1;R) on which u < c.

u(R, θ) < u(z1) ∀θ in some open arc and u(R, θ) ≤ u(z1) ∀θ

Integrate in θ from 0 to 2π.∫ 2π

0

u(R, θ) dθ <

∫ 2π

0

u(z1) dθ = 2πu(z1)

1

2π

∫ 2π

0

u(R, θ) dθ < u(z1)

contradicts CMVP.
Hence u does not attain a global max on Ω.
For the global min, the proof is similar, just change all the equalities. (Or apply
the global max result to −u)
It is called the STRONG maximum principle because we do not need Ω to be
bounded, nor do we need any hypothesis about u on ∂Ω.
Theorem: Week Maximum Principle
Let Ω be a bounded domain. Let u be continuous u ∈ C0

(
Ω
)
∩ C2 (Ω)

and harmonic on Ω.
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[Ω is compact, u ∈ C0(Ω) by EVT, u does havea global max and a global min
on Ω]
Then: either u is constant, or u assumes its global max and min ONLY on the
boundary.
Proof:
u is constant on Ω⇒ u is constant on Ω (by continuity)
Suppose u is not constant on Ω, by Strong Maximum Principle. It does not
exist in global max/min on Ω.
Therefore, it is on the boundary? (Not sure what I heard)
Equivalently, Week Maximum Principle says:
If Ω is a bounded domain, u ∈ C0(Ω) ∩ C2(Ω) is harmonic on Ω, then

∀z ∈ Ω min
w∈∂Ω

u(w) < u(z) < max
w∈∂Ω

u(w)

Example:
To see boundedness of Ω is essential:

Ω = {(x, y); y > 0}

upper half plane.

∂Ω = {(x, 0);x ∈ R}

x-axis.
u(x, y) = y is harmonic, non-constant on Ω.
It has no global max on Ω.
Application:
Uniqueness of harmonic functions with given boudnary values.
Theorem:
Let Ω be a bounded domain, let u, v ∈ C0 (Ω) ∩ C2 (Ω) be harmonic on Ω with
u|∂Ω = v|∂Ω.
Then u = v.
Proof:
Let w = u− v, w ∈ C2

(
Ω
)
∩ C0 (Ω).

w is harmonic on Ω.
w|∂Ω = 0
If w is non-constant, it contradicts WMP.
So w is constant on Ω, w|∂Ω = 0⇒ w = 0 or Ω.

8 January 22nd

Recall: Weak Maximum Principle (Corollary of Strong Maximum Principle)
Ω bounded domain, u ∈ C0

(
Ω
)
∩ C2 (Ω) is harmonic on Ω, non-constant.

Then,
max
z∈Ω

u(z),min
z∈Ω

u(z)
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are attained only on ∂Ω.
Theorem: Liouville’s Theorem
concerns behaviour of non-constant harmonic functions that are defined on as
large as a domain possible. (i.e on Ω = R2)
Lemma: Harnack’s Inequality
Let u be harmonic on D = D(z0;R), R > 0 such that u(z) ≥ 0,∀z ∈ D.
Then, ∀z ∈ D,

0 ≤ u(z) ≤
(

R

R− |z − z0|

)2

u(z0)

(
R

R−|z−z0|

)2

: Positive for any fixed z ∈ D, but it goes to ∞ as z → ∂D.

Proof:
z ∈ D is fixed.
Let D′ = {w ∈ R2 : |w − z| < R− |z − z0|}
Apply solid MVP to u on D′.

0 ≤ u(z) =
1

π (R− |z − z0|)2

∫∫
D′
u dA

Since u ≥ 0 on D, and D′ ⊆ D, we know∫∫
D′
u dA ≤

∫∫
D

u dA

0 ≤ u(z) ≤ 1

π (R− |z − z0|)2

∫∫
D

u dA

Now, apply solid MVT again to u on D this time:

=
1

π (R− |z − z0|)2πR
2u(z0)

Theorem: Liouville’s Theorem
Let u ∈ C2

(
R2
)

be harmonic on the entire plane R2. (u is called an entire
harmonic function)
If u is either bounded above on R2 or bounded below on R2, then u is constant.
This means ∃c ∈ R such that u(z) ≤ c,∀z ∈ R2.
Before proving it,
Corollary:
A non-constant entire harmonic function u is neither bounded above nor below.
Hence, it assumes all possible real values. (Image u(R2) = {u(z) : z ∈ R2 = R})
Proof:
Suppose u(z) ≤ c,∀z ∈ R2

Let v(z) = u(z)− c, v(z) ≥ 0,∀z ∈ R2

and v is entire harmonic.
Let z0, z1 ∈ R2, let R > |z0 − z1|.
Apply Harnack to v on D(z0;R).
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0 ≤ v(z1) ≤ R2

(R− |z0 − z1|)2 v(z0)

For any R > |z0 − z1|.
Let R→∞ (because v is entire harmonic), we get v(z1) ≤ v(z0).
Interchanging Roles:

v(z0) ≤ v(z1)

So
v(z0) = v(z1)

⇒ v is constant.
Complex Numbers (Review)

C = {a+ ib : a, b ∈ R} ∼= R2 = {(a, b) : a, b ∈ R2}

This bijection allows us to define the structure of a 2-dimentional real vector
space on C
That is, we define addition and real scalar multiplication on C by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(Related to ordered pairs)

t ∈ R2, t(a+ ib) = (ta) + i(tb)

Explicitly, let {e1, e2} be the standard basis of R2

(x, y) = xe1 + ye2

Let 1 = 1 + 0i, (a = 1 ∈ R, b = 0 ∈ R)
i = 0 + 1 · i, (a = 0 ∈ R, b = 1 ∈ R)
Map e1 7→ 1, e2 7→ i is a real vector space isomorphism from R2 → C.
C has additional structure.
We have multiplication of 2 elements of C to give an element of C.
We’ll define (a+ ib) · (c+ id) by demanding that multiplication distributes over
addition and that i · i = −1 = −(1 + 0i).

(a+ ib)(c+ id) = a(c+ id) + ib(c+ id)

= ac+ iad+ ibc− bd (i2 = −1)

= (ac− bd) + i(ad+ bc)

From this definition, we get:

z = a+ ib, w = c+ id, z, w ∈ C

We get
zw = wz
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Commutative.

(z1 + z2)w = z1w + z2w

z(w1 + w2 = zw1 + zw2)

Distributive.

z1 = a1 + ib1, z2 = a2 + ib2

If t ∈ R,
(tz)w = z(tw) = t(zw)

z, w, u ∈ C

(zw)u = z(wu)

Associative.

1 (c+ id) = c+ id

1 · z = z,∀z ∈ C

1 is a multiplicative identity.
Define R = {a+ 0i : a ∈ R}.
(This is not just a one-dimentional vector subspace, it is also closed under
multiplication)

(a+ 0i) (c+ 0i) = (ac) + 0 · i

So
R = {a+ 0 · i : a ∈ R}

is a subalgebra of the real algebra C.

iR = {0 + ib : b ∈ R}

is a 1-dimentional vector space, but it is not a subalgebra.

(b · i)(d · i) = −bd /∈ iR

if b, d both non-zero.
If z = a+ ib,

a = <(z) = Re(z) = real part of z

b = =(z) = Im(z) = imaginary part of z

Given z = a+ ib, we define
z = a− ib

This is called the complex conjugate of z.
z 7→ z is reflection across x-axis hence it is a real linear isomorphism.
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tz = tz if t ∈ R
z + w = z + w
Claim: zw = z w
Proof: Directly from definition
zz = a2 + b2

zz is real and non-negative and zz = 0 iff z = 0
Define the modulus of z to be

|z| =
√
zz

=
√
a2 + b2

If z = a+ ib |z| ≥ 0 with equality ⇐⇒ z = 0
Claim: |zw| = |z| · |w|
Proof:

|zw|2 = (zw) (zw)

= zwz w

= ...

= |z|2|w|2

Corollary:
If z 6= 0, then

z

|z|2
z = z

z

|z|2
= 1

Hence, any nonzero z ∈ C has a unique multiplicative inverse.

z−1 =
1

z
=

z

|z|2

Remark: Suppose Rn is given the structure of a real algebra such that

|pq| = |p||q|,∀p, q ∈ Rn, |p|2 =

n∑
i=1

(pi)
2

And such that any non-zero p ∈ Rn has a multiplicative inverse (Division alge-
bra).
Do not assume commutative.
Do not assume associative.
Theorem: Hurwitz 1898.
Only Four.
Quaternion.
Octonions.
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9 January 24th

Note:
If z = a+ ib ⇐⇒ (a, b) ∈ R2, then iz = ia− b ⇐⇒ (−b, a) ∈ R2.
Multiplication by i is 90◦ counterclockwise roration.
Geometric Interpretation.
z = (x, y) ∈ R2

D(z;R) = {w ∈ R2 : |w − z| < R}
z = x+ iy, |z| =

√
zz =

√
x2 + y2

z ∈ C, D(z;R) = {w ∈ C : |z − w| < R}
C and R2 have the same topology.
From now on, we identify R2 and C.
Definition:
Let Ω ⊆ C be a subset, (usually Ω will be a domain).
A complex-valued function on Ω is a map f : Ω→ C,∀z ∈ Ω, w = f(z) ∈ C.
Examples:

1. f(z) = z2

2. g(z) = z

3. h(z) = 1
1−z

The examples above have different domains.

C 3 z = x+ iy ⇐⇒ (x, y) ∈ R2

u+ iv = w : f(z) = f(x, y)

Hence
f(z) = f(x, y) = u(x, y) + iv(x, y)

u(x, y) = Re (f(x, y))

v(x, y) = Im (f(x, y))

So a complex-valued function on Ω is equivalent to two real-valued functions on
Ω.
Examples:

z = x+ iy

f(z) = z2 = (x+ iy)(x+ iy) = (x2 − y2) + (i2xy)

u(x, y) = x2 − y2

v(x, y) = 2xy

g(z) = z = x− iy

u(x, y) = x
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v(x, y) = −y

h(z) =
1

1− z

(
1− z
1− z

)
=

1− z
|1− z|2

=
1− (x− iy)

(1− x)2 + y2

u(x, y) =
1− x

(1− x)2 + y2

v(x, y) =
y

(1− x)2 + y2

Remark:
Let f : Ω→ C.
Graph of f = {(z, f(z)) ∈ C×C, z ∈ Ω} {(x, y, u(x, y), v(x, y)) ∈ R4; (x, y) ∈ Ω}
is a subset of R4. So we can’t draw it.
Limits
Let Ω be open subset of C and let f : Ω \ {z0} → C. (f need not be defined at
z0)
We say that limz→z0 f(z) = w0 iff ∀ε > 0,∃δ > 0 such that if z ∈ Ω ∩D(z0; δ),
then f(z) ∈ D(w0; ε).
Since f : Ω ⊆ R2 → R2 and the notion of open sets is the same in R2 and C.
This is exactly the definition of limits from Calc 3.
Let w0 = u0 + iv0

f(z) = u(x, y) + iv(x, y)

|w0 − f(t)| =
√

(u(x, y)− u0)
2

+ (v(x, y)− v0)
2

f(z)→ w0 ⇐⇒ u(x, y)→ u0 AND v(x, y)→ v0

lim
z→z0

f(z) = w0 ⇐⇒

{
limz→z0 u(x, y) = u0

limz→z0 v(x, y) = v0

Lemma:
Suppose limz→z0 f1(z) = w1, limz→z0 f2(z) = w2.
Then,

1. limz→z0 (f1(z)± f2(z)) = w1 ± w2

Automatic.

Proposition:

2.
lim
z→z0

f1(z)f2(z) = w1w2

3.

lim
z→z0

f1(z)

f2(t)
=
w1

w2

provided w2 6= 0 and f2(z) 6= 0 in a neighbourhood of z0.
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Proof:
(b)

f1(z) = u1(x, y) + iv1(x, y)

f2(z) = u2(x, y) + iv2(x, y)

f1(z)f2(z) = (u1(x, y)u2(x, y)− v1(x, y)v2(x, y))

+ i (u1(x, y)v2(x, y) + v1(x, y)u2(x, y))

= w1w2

For (c)
u1 + iv1

u2 + iv2
=

(u1 + iv1)(u2 − iv2)

u2
2 + v2

2

= . . .

Continuity
Let Ω ⊆ C be open.
f : Ω→ C.
Let z0 ∈ Ω.
We say f is continuous at z0 if limz→z0 f(z) = f(z0)
Notice that z0 = (x0, y0), f(z) = u(x, y) + iv(x, y)
f is continuous at z0 iff both u and v are continuous at (x0, y0)
We say f is continuous on Ω if f is continuous at z for all z ∈ Ω.
It is clear from the properties of limits, that if f and g are continous at z0. Then
so is f ± g, fg, fg , provided g(z) 6= 0 in a neighbourhood of z0.
Corollary:
Since f(z) = z and g(z) = c = constant are clearly continuous everywhere, it
follows that the polynomials

a0 + a1z + · · ·+ anz
n

are continuous everywhere.
And rational functions,

a0 + a1z + · · ·+ anz
n

b0 + b1z + · · ·+ bnzn

are continuous everywhere where denominator is non-zero.
Suppose

f : U ⊆open C→ C

g : V ⊆open C→ C

with f(u) ⊆ V .
Then h = g ◦ f : U → C if f is continuous at z0 ∈ U and g is continuous at
f(z0) ∈ V .
Then g ◦ f is continuous at z0 ∈ U .
Proof:
You have already done this.
The complex derivative
This is new and different.
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Let Ω ⊆open⊆ C.
Let f : Ω→ C, let z0 ∈ Ω.
We say that f is complex differentiable at z0 iff.

lim
z→z0

f(z)− f(z0)

z − z0

exists.
Involves being able to devide by non-zero elements of R2 ∼= C.
We can’t do this in Rn, n > 2.
For z sufficiently close to z0, since Ω is open.

f(z)− f(z0)

z − z0

is a function of z0.
The notion of existence of limit is the usual multivariable calculus notion.
Example:
f(z) = z2,Ω = C

lim
z→z0

f(z)− f(z0)

z − z0
= lim
z→z0

z2 − z2
0

z − z0

= lim
z→z0

(z + z0) = 2z0

f ′(z) = 2z,∀z ∈ C

Lemma:
Suppose f is complex differentiable at z0.
Then f is continuous at z0.
Proof:
f(z)− f(z0) is equal to f(z)−f(z0)

(z−z0) (z − z0)→ 0

Properties of the complex derivative
Suppose f and g are differentiable at z.

(f ± g)
′
(z) = f ′(z)± g′(z)

(fg)
′
(z) = f ′(z)g(z) + f(z)g′(z)(

f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

(g(z))
2

g(z) 6= 0
Enough by continuity.
Proof:
The proof is the same as in Calculus 1.
Because we have the same limit laws and that’s all you need.
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10 January 27th

From last time:
Let Ω ⊆ C be open, f : Ω→ C, z0 ∈ Ω.
We say f is (complex) differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0)

The Chain Rule
Let f : U → C, g : V → C such that f(U) ⊆ V .
h = g ◦ f : U → C if f is differentiable at z0 and g is differentiable at f(z0).
Then h = g ◦ f is differentiable at z0, and

h′(z0) = g′(f(z0))f ′(z0)

Proof:
Let w0 = f(z0) ∈ V . Define a map T : V → C by

T (w) =
g(w)− g(w0)

w − w0
− g′(w0)

for w 6= w0.
T (w0) = 0 by construction, T is continuous at w0.
Solve for g(w)− g(w0).

g(w)− g(w0) = (g′(w0) + T (w)) · (w − w0)

also works when w = w0.
The equation is true for all w ∈ V .
Let w = f(z), z ∈ U,w0 = f(z0). Divide both sides by z − z0.
z 6= z0

g(f(z))− g(f(z0))

z − z0
= [g′(f(z0)) + T (f(z))]

(
f(z)− f(z0)

z − z0

)
T (f(z))→ 0 by continuity of f at z0, T at w0.
Analytic Functions
Define:
Ω ⊆open C. Let f : Ω→ C.
Let z0 ∈ Ω.
We say f is analytic (also called complex analytic, also called holomorphic)
at z0 if f ′(z) exists and is continuous in some open neighbourhood U ⊆ Ω of z0.
Notice:
By its definition, f is analytic at z0 ∈ Ω iff f is analytic at all points in some
open neighbourhood of z0.
Examples:
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∃U open, U ⊆ Ω, U 3 z0 such that f ′ exists and is continuous on U .
So f is analytic at z∀z ∈ U .
Remark:
It is actually true that if f is (complex) differentiable on an open set U , then
its (complex) derivative f ′ must be continous on U .
But this is a hard theorem. (Goursat’s Theorem).
We will do it later in course.
Examples:

1. Any polynomial is analytic on C.

2. Non-example:

Consider the map g : C→ C, g(z) = zz = |z|2 = u(x, y) + iv(x, y)

v(x, y) = 0, u(x, y) = x2 + y2.

On Assignment 2: You show that g is complex differentiable at (0, 0) but
nowhere else.

So this function g is nowhere analytic.

This g ∈ C∞
(
R2
)
. So as a function g : R2 → R2.

It is differentiable everywhere in sense of Calc 3.

But it is not complex differentiable except at origin.

Cauchy-Riemann Equations
Theorem:
Let f : Ω ⊆open C→ C be complex differentiable at z0 ∈ Ω.
Then, ux, uy, vx, vy all exist at z0 and

ux(z0) = vy(z0)

uy(z0) = −vx(z0)

Proof:
f ′(z0) = limz→z0

f(z)−f(z0)
z−z0 exists by assumption.

We get the same limiting value regardless of what path we take in the plane Ω
to (x0, y0).
Consider the path y = y0, x→ x0.
See pictures.
Remark:
The converse in not true. That is, suppose ux, uy, vx, vy all exist at z0 and
satisfy (*).
Then f does not have to be (complex) differentiable at z0).
(Counterexample on A2).
You already saw something like this in Calc 3. Suppose F : U ⊂open Rn → Rm
if F is differentiable at ~a ∈ U , then ∂Fi

∂xi
(~a) exists ∀i = 1, ...,m, j = 1, ...,m

But one can have that all first partial derivatives exist at ~a ∈ U and F still not
be differentiable at ~a.
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Stronger Assumption: if F ∈ C1(u), then F is differentiable on U .
We have a similar result here.
Theorem:
Let Ω ⊆ C be open. Let u, v ∈ C1(Ω) (ux, uy, vx, vy exist and are continuous on
all of Ω)
Suppose ux = vy and uy = −vx everywhere on Ω.
Then f is analytic on Ω.
Proof:
u, v ∈ C1(Ω)→ u and v are differentiable on Ω in the sense of Calculus 3.
Let z0 ∈ Ω.

u(z)− u(z0) = ux(z0)(x− x0) + uy(z0)(y − y0) +Q1(x, y)

v(z)− v(z0) = vx(z0)(x− x0) + vy(z0)(y − y0) +Q2(x, y)

where

lim
(x,y)→(x0,y0)

Qk(x, y)

||(x, y)− (x0, y0)||
= 0, k = 1, 2

f(z)− f(z0)

z − z0
=
u(z) + iv(z)− (u(z0) + iv(z0))

z − z0

=
ux(z0)(x− x0) + uy(z0)(y − y0) +Q1(x, y)

z − z0

+ i
vx(z0)(x− x0) + vy(z0)(y − y0) +Q2(x, y)

z − z0

=
ux(z0)(z − z0) + ivx(z0)(z − z0) +Q1(x, y) +Q2(x, y)

z − z0

= ux(z0) + ivx(z0) +
Q1(x, y)

z − z0
+
Q2(x, y)

z − z0

Let z → z0.

|Q(x, y)

z − z0
| = |Q(x, y)|
||(x, y)− (x0, y0)||

goes to 0 as z → z0.

We have shown that limz→z0
f(z)−f(z0)

z−z0 exists for all z ∈ Ω.
So f is differentiable on Ω.
We have also shown that

f ′(z) = ux(z) + ivx(z) = vy(z)− iuy(z), u, v ∈ C1(Ω)

So f ′ is continuous on Ω. So f is analytic on Ω.

ux = vy, uy = −vx
Cauchy-Riemann Equations.
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11 January 29th

From last time:

Ω ⊆open C

.
f : Ω→ C is analytic or Ω if f ′ exists and is continuous on Ω.
Let f = u+ iv.
Theorem:
with u, v ∈ C1(Ω), then f is analytic on Ω iff ux = vy, uy = −vx. (Cauchy-
Riemann equations) on Ω.
Example:
f(z) = z2 = (x2 − y2) + i2xy
u(x, y) = x2 − y2, v(x, y) = 2xy
Cauchy-Riemann equations are satisfied.
f ′(z) = ux + ivx = vy − iuy
Suppose we consider u(x, y) + iv(x, y) where u(x, y) = x2 − y2, v(x, y) = c · xy.
ux = 2x, uy = −2y, vx = cy, vy = cx
Analytic iff c = 2.
Complex analyticity is much more ”rigid” than real variable differentiability.
Cauchy-Riemann equations in polar corrdinates
f(z) = u(x, y) + iv(x, y) = u(r, θ) + iv(r, θ)
Polar coordinates.

x = r cos θ

y = r sin θ

for r > 0.
Suppose h ∈ C1(R2 \ {0}) by Chain rule,

hr = hx
∂x

∂r
+ hy

∂y

∂r
= cos θhx + sinhy

hθ = hx
∂x

∂θ
+ hy

∂y

∂θ
= −r sin θhx + r cos θhy

ur = cos θux + sin θuy

= cos θvy − sin θvx

=
1

r
vθ

vr = cos θvx + sin θvy

= − cos θuy + sin θux = −1

r
uθ
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Check the other direction, we conclude that

ux = vy, uy = −vx ⇐⇒ ur =
1

r
vθ, vr = −1

r
uθ

Example:
Ω : C \ {(x, 0) : x ≤ 0}
Define f : Ω→ C by f(z) = log r + iθ
θ = arg(z),−π < θ < π.
u(r, θ) = log r, v(r, θ) = θ.

ur =
1

r
uθ = 0

vr = 0 vθ = 1

ur = 1
rvθ, vr = − 1

ruθ.
Hence,

log r + iθ

is analytic on Ω.
You can also check this in x, y coordinates.

u(x, y) = log
√
x2 + y2, v(x, y) = arg(x, y)

This example is very important and will come back on Friday.
Relation between analytic C-valued functions and harmonic R-valued
functions
Let f : Ω→ C by analytic on Ω.
And suppose u, v ∈ C2(Ω). [In fact, this is always true. We will prove this
later.]

ux = vy, uy = −vx
uxx = (ux)x = (vy)x = vyx

uyy = (uy)y = −(vx)y = −vxy
Since v ∈ C2(Ω), vxy = vyx ⇒ uxx + uyy = 0.
Thus, u is harmonic.
Similarly, v is harmonic.
So we have shown that the real and imaginary parts of analytic function are
harmonic. (Modulo the assumption that we’ll get rid of later)
Exponential Functions
Recall from Calculus 1, we have a function exp : R→ R, exp(x) = ex

Properties:
exp is C∞, exp(0) = 1.
exp′ = exp, exp > 0 ∀x
exp(x+ y) = exp(x) exp(y)
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exp(−x) = [exp(x)]
−1

We seek a function f : C→ C such that f is differentiable and f ′(z) = f(z) ∀z ∈
C.
This implies:

• f differentiable → f continuous on C

• f ′ = f → f ′ continuous on C. Hence f must be analytic on C.

So f = u+ iv must satisfy Cauchy-Riemann equations.

f ′ = ux + ivx = vy − iuy = f = u+ iv

→ ux = u→ u(x, y) = a(y)ex

for some C∞ function a(y).

vx = −uy = v → v(x, y) = b(y)ex

for some C∞ function b(y).

ux = aex = vy = exb′

vx = bex = −uy = −exa′

a = b′, b = −a′

b′′ = a′ = −b→ b(y) : C cos(y) +D sin(y)

a′′ = −b′ = −a→ a(y) = A cos(y) +B sin(y)

We also want f(0) = 1 just like in the real case.

u(0, 0) = 1 = a(0)e0 = a(0) = A

v(0, 0) = 0 = b(0)e0 = b(0) = −B

B = 0, A = 1

We have shown that

f(z) = ex cos(y) + iex sin(y) = exp(z)

has following properties. f is analytic on C, f ′(z) = f(z) ∀z ∈ C, f(0) = 1
This is called the complex exponential function.
Observer: if z = x is real (y = 0).
Then exp(z) = ex = exp(x).
So the restriction of exp to the real line gives the real exp function.
It is no longer true that exp(z) > 0.
Example:
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exp(πi) = (x = 0, y = π) = −1

exp(
π

2
i) = i

We will show soon that exp(z) 6= 0 ∀z and in fact

exp(C) = {exp(z) : z ∈ C} = C \ {0}

Periodicity:

exp (z + 2πik) , k ∈ Z
= exp(z)

exp(z) is periodic with period 2πi (very different from real case).

| exp(z)|2 = |ex cos(y) + iex sin(y)|2

(ex cos y)
2

+ (ex sin y)
2

= e2x > 0,∀(x, y)⇒ exp(z) 6= 0 ∀z

exp(2πi) = exp(0) = 1

Let z1 = x1 + iy1, z2 = x2 + iy2.

exp(z1 + z2) = exp ((x1 + x2) + i(y1 + y2))

= ex1+x2 cos(y1 + y2) + iex1+x2 sin(y1 + y2)

= ex1ex2 (cos y1 cos y2 − sin y1 sin y2) + iex1ex2 (sin y1 cos y2 + cosy1 sin y2)

= ex1 (cos y1 + i sin y1) · ex2 (cos y2 + i sin y2)

= exp(z1) exp(z2)

exp(z1 + z2) = exp(z1) exp(z2) ∀z1, z2 ∈ C

Definition:
Let e ∈ R be the usual base of natual logarithm.
Let w ∈ C
Define:

ew := exp(w)

z = x+ iy ez = ex+iy = exeiy = ex cos y + iex sin y
eiy = cos(y) + i sin(y) ∀y ∈ R
Euler’s formula.
(Plug in x = 0 into exp(z))
Corollary:

eiπ = −1
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12 January 31st

From last time:
Let z = x+ iy ∈ C.

exp(z) = ez = ex cos(y) + iex sin(y)

exp is analytic on C.
∂

∂z
ez = ez ∀z

ez 6= 0 ∀z

ez1+z2 = ez1ez2

ez+2πik = ez k ∈ Z

e2πik = 1 k ∈ C

For y ∈ R,
eiy = cos(y) + i sin(y), |eiy| = 1

Polar form of a complex number
C 3 z = x + iy ⇐⇒ (x, y) ∈ R2 in polar coordinates: x = r cos θ, y =

r sin θ, r =
√
x2 + y2 = |z|.

z = r cos θ + r sin θ

= r (cos θ + i sin θ)

z = reiθ

Polar form of z.
|z| = |reiθ| = |r||eiθ| = r

θ is only defined modulo integer multiplies of 2π.
θ̃ = θ + 2πk, k ∈ Z also works.

reiθ̃ = rei(θ+2πk)

= reiθei2πk = reiθ = 1

eiθ is called the phase of z = z
|z| for z 6= 0.

Suppose z1, z2 6= 0,
z1 = r1e

iθ1 , z2 = r2e
iθ2

z1z2 = r1r2e
i(θ1+θ2)

|z1z2| = r1r2 = |z1||z2|

arg(z1z2) = arg(z1) + arg(z2)
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(Defined up Z-multiples of 2π).
Let z = reiθ = x+ iy
z = x− iy = r (cos θ − i sin θ) = re−iθ

Everything works.

1

z
=

z

|z|2
=
re−iθ

r2
=

1

r
e−iθ

Application of polar form:
nth power + nth roots

z = reiθ ⇒ zn = rneinθ

n is positive integer.
Example:
z = 1 +

√
3

1 +
√

3i = 2ei
π
3 (

1 +
√

3i
)3

= 23e(
iπ
3 ) = −8

nth roots
Let z = reiθ = rei(θ+2kπ), k ∈ Z
Claim:

ζk = r
1
n ei(

θ
n+ 2πk

n ), k = 0, 1, . . . , n− 1

are n distinct nth roots of z.
(We know that ζn = z has at most n distinct roots from algebra.)

ζn − z = (ζ − ζ0) (ζ − ζ1) . . . (ζ − ζn−1)

First we show that (ζk)
n

= z.

(ζk)
n

=
[
r

1
n ei(

θ
n+ 2πk

n )
]n

= reiθ = z

Suppose 0 ≤ j < k ≤ n− 1 need to show ζj 6= ζk.
Suppose ζk = ζj

1 =
ζk
ζj

= ei(2π) k−jn

0 <
k − j
n

<
n− 1

n
< 1

Contradiction
Examples:
z = 1, (r = 1).
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nth roots of unity = {e 2πik
n , k = 0, 1, . . . , n− 1}

Pictures here.
The Logarithm

• We want to define an inverse to the exponential function (which will be
the logarithm). However, exp : C→ C is NOT one-to-one.

Theorem:
Let S = {z = x+ iy : −π < y ≤ π}, then exp maps S bijectively onto C \ {0}.
And exp maps the line y = π onto the negative x-axis.
Proof:
We already know that exp(z) 6= 0 for all z.
It is clear that exp(x+ iπ) = exeiπ = −ex is on negative x-axis.
Let w 6= 0, we want to show ∃!z ∈ S with exp(z) = w.
Let w = geiφ in polar form, g > 0,−π < φ ≤ π.
Let x = log g, y = φ.
x+ iy ∈ S,

ez = ex+iy

= elog g+iφ

= elog geiθ = geiφ = w

Suppose ez1 = e = ez2 for z1, z2 ∈ S.

ez1−z2 = 1 ⇐⇒ z1 − z2 = 2πik, k ∈ Z

z1, z2 are an the same vertical line.
|z1 − z2| = 2πk both in S, on same vertical line

|z1 − z2| < 2π ⇒ k = 1⇒ z1 = z2

Remark:
We could also take

Sb = {x+ iy : b− 2π < y ≤ b}

for any real number b.
(We took b = π)
In the same way, exp maps Sb bijectively onto C \ {0} with the upper edge of
Sb mapped onto the ray φ = b in w-plane.
We can now define (infinitely many) ”inverses” to exp.
Definition: Let z 6= 0, we can write z = reiθ, r > 0.
Choose a strip b− 2π < θ ≤ b.
Define log(z) = log(r) + iθ.
Where θ is the unique argument of z in the range b− 2π < θ ≤ b.

ez = elog r+iθ = elog reiθ = reiθ = z
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So we get many different ”branches” of the logarithm. (Which is a multi-valued
function)

Sb 
 C \ {0}

Inverse to each other.
When b = π, we usually call this the principal branch of logarithm.
This branch log z is not continuous on the ray φ = b in w-plane.
To avoid this problem, we remove this ray from the domain.

S0
b = {x+ iy ∈ C; b− 2π < y < b}

exp maps S0
b bijectively onto C \ {0} \ {rayφ = b} and the function

reiθ = z 7→ log(z) = log(r) + iθ

with b− 2π < θ < b is an inverse to exp and is continuous on its domain.
Next time:
We will show that the branches of logarithm are analytic and compute the
complex derivative.

13 Feburary 3rd

From last time:
b ∈ R,

Sb = {x+ iy : b− 2π < y ≤ b}

exp maps Sb bijectively onto C \ {0}

S0
b = {x+ iy : b− 2π < y < b}

exp maps S0
b bijectively onto C \ {ray φ = b} in the w-plane.

Pictures here.
z = reiθ

w = ρeiφ

Inverse map is called a branch of the logarithm (which is really a multivalued
function).
If w = ρeiφ, ρ > 0, b− 2π < φ < b,
Define logw = log ρ+ iφ.
With this restriction to a particular ”branch”.
The logarithm function is analytic on its domain. (We did this when we talked
about CR in polar coordinates)

z = reiθ, r > 0

f(z) = log r + iθ = u(r, θ) + iv(r, θ)
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ur =
1

r
vθ

vr = −1

r
uθ

CR equations are satisfied.
θ : Any branch of the argument function.
Any branch of log is analytic on its domain which is C \ {0} \ {ray θ = b}
Principal branch.
Hence, log′(z) exists ∀z ∈ Db.
We seek a formula for derivative of log z.
We know exp(log z) = z,∀z ∈ Db because they are inverses of each other.
So by the Chain rule, if I differentiate both sides with respect to z

1 = exp′(log z) log′(z) = exp(log(z)) log′(z)

Thus, log′(z) = 1
z just like real case. (For any branch).

Addition Law

log(z1z2) = log z1 + log z2 + 2πik

For some k ∈ Z which depends on branch choices.
Claim:
Let z 6= 0, z

1
n = exp

(
1
n log z

)
Set of values because log is multivalued.
We claim that it is exactly the set of n distinct nth roots of z.
Proof:

z = reiθ = rei(θ+2πk), r > 0, k ∈ Z.

log z = (log r) + i (θ + 2πk)

1

n
log z =

1

n
log r + i

(
θ

n
+

2πk

n

)

exp(
1

n
log z) = exp

(
1

n
log r + i

(
θ

n
+

2πk

n

))
= exp

(
1

n
log r

)
exp

(
i

(
θ

n
+

2πk

n

))
= r

1
n ei(

θ
n+ 2πk

n )

= z
1
n

This motivates:
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Complex exponents.
Let c ∈ C. We want to define zc for z 6= 0.
In real case, c ∈ R, x > 0

xc = elog(xc) = ec log x = exp(c log x)

We do the same:
zc := exp(c log z)

This is multivalued because log is.

ii = exp(i log i)

= exp

(
i

(
2π

n
+ 2πik

))
, k ∈ C

= exp

(
−π
2
− 2πk

)
= e

−π
2 −2πk

All the infinitely many values of ii are real!

d

dz
(zc) =

d

dc
(exp (c log z))

= exp′ (c log z) · d
dz

(c log z)

= exp (c log z) · c
z

= zc · c
z

= czc−1

Trignometric Functions
Recall:
If x ∈ R,

eix = cos(x) + i sin(x)→ cos(x) =
eix + e−iex

2
, x ∈ R

e−ix = cos(x)− i sin(x)→ sin(x) =
eix − eix

2i
For any z ∈ C, define

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i

d

dz
(cos z) =

d

dz

(
eiz + e−iz

2

)
=

1

2

(
ieiz − ie−iz

)
=
−1

2i

(
eiz − e−iz

)
= − sin(z)
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d

dz
(sin z) =

d

dz

(
eiz − e−iz

2i

)
= cos(z)

Clear:
cos(−z) = cos(z)

sin(−z) = − sin(z)

sin2(z) + cos2(z) = 1

This equation gives no bounds on | sin(t)| or cos(t).
Disgression: Real hyperbolic functions

cosh, sinh : R→ R

cosh(t) =
et + e−t

2

sinh(t) =
et − e−t

2

Defined.

d

dt
cosh(t) = sinh(t)

d

dt
sinh(t) = cosh(t)

cosh2(t)− sinh2(t) = 1

Thus, cosh2(t)− sinh2(t) = 1
Hyperbolic functions.
Circular functions.
Complex Hyperbolic Functions
Define: ∀z ∈ C

cosh(z) =
ez + e−z

2

sinh(z) =
ez − e−z

2

cosh, sinh are analytic on C.

d

dz
cosh(z) = sinh(z)

d

dz
sinh(z) = cosh(z)

cosh2(z)− sinh2(z) = 1
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Go back to compute trig functions.

cos(z) = u(x, y) + iv(x, y)

=
eiz + e−iz

2

=
ei(x+iy) + e−i(x+y)

2

=
1

2

(
eixe−y + e−ixey

)
=

1

2
((cosx+ i sinx) ey + (cos(x)− i sin(e)ey))

cos(z) = cos(x) cosh(y)− i sin(x) sinh(y)

sin(z) = − d

dz
= − (ux + ivx)

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y)

Don’t memorize any of these.
Only remember:

eiz = cos(z) + i sin(z)

ez = cosh(z) + sinh(z)

14 Feburary 5th

From last time:

z ∈ C

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i

eiz = cos(z) + i sin(z)

cos(−z) = cos(z)

sin(−z) = − sin(z)

d

dz
cos z = − sin z
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d

dz
sin z = cos z

cosh(z) =
ez + e−z

2

sinh(z) =
ez − e−z

2

ez = cosh(z) + sinh(z)

cosh(−z) = cosh(z)

sinh(−z) = − sinh(z)

d

dz
cosh(z) = sinh(z)

d

dz
sinh(z) = cosh(z)

All four functions are analytic on all of C.

cos(iz) = cosh(z)

sin(iz) = i sinh(z)

cosh(iz) = cos(z)

sinh(iz) = i sin(z)

Special Case:
Let z = x ∈ R.

sin(ix) = i sinh(x)

cos(ix) = cosh(x)

So cos and sin are unbounded on C because they are unbounded on the purely
imaginary axis.
Similarly, sinh(ix) = i sin(x), cosh(ix) = cos(x).
cosh and sinh are bounded on imaginary axis.
Summary:
cos and sin periodic in x-direction unbounded in iy-direction.
cosh and sinh unbounded in x-direction. Periodic in iy-direction.
Inverse Trig and Inverse Hyperbolic Functions:
(By one example)
Suppose z = cosw. How can we find w?

cos(w) =
eiw + e−iw

2

2z = eiw + e−iw

eiw − 2z + e−iw = 0
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(
eiw
)2 − 2z

(
eiw
)

+ 1 = 0

eiw =
2z ±

√
4z2 − 4

2

iw = log
(
z ±

√
z2 − 1

)
w = −i log

(
z ±

√
z2 − 1

)
= cos−1(z)

Multivalued because log is multivalued.

cos−1(i) = −i log
(
i±
√
−2
)

= −i log
(
i±
√

2i
)

Harmonic Conjugates
Recall:
If f = u + iv is analytic on Ω (and if u, v ∈ C2 (Ω), (We will see that it is
always true), then u, v are harmonic on Ω.
Question, suppose u ∈ C2 (Ω) is harmonic on Ω.
Can we find a v ∈ C2 (Ω) harmonic on Ω such that f = u+ iv is analytic.
If such v exists, then v is called a harmonic conjugate of u.
Note: By our definition of analytic, v must be at least C1, the Cauchy-Riemann
equations must be satisfied:

ux = vy, uy = −vx

u ∈ C2 → ux, uy ∈ C1

vx, vy ∈ C1 ⇒ v ∈ C2

Suppose v, ṽ are both harmonic conjugate of u

(v − ṽ)x = 0

(V − ṽ)y = 0

If Ω is connected.

v − ṽ is constant

It is clear that if v is a harmonic conjugate of u, then v+c is also, for any constant
c ∈ C, we just showed that if Ω is connected, this the entent of non-uniqueness.
What about existence?
Suppose v ∈ C2 (Ω), let F = ∇v = (vx, vy) is a C1 vector field or Ω.
From the Fundamental theorem of line integrals,∫ z

z0

F · dr = v(z)− v(z0)

for any path from z0 to z lying entirely in Ω.
We start with u ∈ C2(Ω), which is harmonic on Ω. We seek a harmonic conju-
gate v.
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We must have
vx = −uy
vy = ux

∇v = (vx, vy) = (−uy, ux)

Hence:
Let’s define v : Ω→ R by

v(z) = v(z0) +

∫ z

z0

(−uy, ux) · dr

For this to give a well-defined function v on Ω, we need to show that the line
integral of the vector field (−uy, ux) is independent of the path from z0 to z as
long as it lies entirely in Ω.
This is not always true!
We need to make an assumption about the set of Ω.
Recall:
Suppose Ω is a Jordan domain.
Ω is 1-connected, (also called simply-connected), means the boundary ∂Ω con-
sists of exactly one piece-wise smooth simple closed curve (Jordan curve).
Equivalently, the ”inside” of ∂Ω of the Jordan curve lies entirely inside Ω.
Equivalently, Ω ”has no holes”.
Theorem:
Let Ω be a simply-connected Jordan domain. u ∈ C2 (Ω) is harmonic on Ω,
then ∫ z

z0

(−uy, ux) · dr

is independent of the path from z0 to z lying entirely in Ω.
Proof:
Let’s let γ1, γ2 be two curves in Ω from z0 to z.
Then γ + γ−1

2 is a closed loop based at z0. (Simple closed curve) implies that
(since Ω is simply-connected) the inside of γ1 + γ−1

2 lies entirely inside Ω.
Apply Green’s Theorem to this curve:∫

γ1

F · dr −
∫
γ2

F · dr =

∫
γ1+γ−1

2

F · dr =

∫∫
D

(Qx − Py) dA

Need to show this is zero.

F = (P,Q) = (−uy, ux)

Qx − Py = uxx + uyy = 0
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by assumption.
Hence, the line integral is independent of path.
In general case, we decompose into a finite number of the special case.
Example:

u(x, y) = x2 − y2

F = (−uy, ux) = (2y, 2x) = ∇(2xy)

v = 2xy + const is the harmonic conjugate.

u+ iv =
(
x2 − y2

)
+ i (2xy + C) = z2 + ic

is analytic.

u(x, y) = cos(x) cosh(y)

harmonic on C.

F = (−uy, ux) = (− cos(x) sinh(y),− sin(x) cosh(y))

= ∇ (− sin(x) sinh(x))

v = − sin(x) sin(y) + const

In general, if Ω is a Jordan domain that is NOT simply-connected, then there
is no guarantee that a harmonic conjugate necessarily exists.
Examples:
Puncture disc or annulus.
This is not simply connected.

u = log
√
x2 + y2

This is harmonic on Ω, because there does not exist a harmonic conjugate v on
Ω. On Ω \ ray, it would have to be arg(z), which does not extend to Ω.

15 Feburary 7th

Chapter 4 Complex Line integrals (also called contour intergrals)
Recall: if F = (P,Q) is continous vector field on an open set Ω in R2 and
γ : [a, b]→ R2 is a curve whose image lies inside Ω, then we define∫

γ

F · dr =

∫ b

a

(
P (x(t), y(t))

dx

dt
+ (Q(x(t), y(t)))

dy

dt

)
dt

=

∫
γ

(Pdx+Qdy)

Let f : Ω→ C be continuous complex-valued function on Ω.
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f = u+ iv, u, v ∈ C0 (Ω)
We want to define

∫
γ
f dz

Motivation:
z = x+ iy
”dz = dx+ idy”
f = u+ iv.∫

γ

f dz =

∫
γ

(u+ iv) (dx+ idy) =

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

Define:

∫
γ

f dz :=

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

=

∫
γ

(u,−v) · dr + i

∫
γ

(v, u) · dr

Line integrals of continuous vector fields on Ω
Aside:

f = u+ iv ⇐⇒ (u, v)

= f̄ · dr + i

∫
γ

(
if̄
)
· dr

f̄ = u− iv ⇐⇒ (u,−v)

if̄ = v + iu ⇐⇒ (v, u)

Circulation and flux of f̄
Example:
γ = (cos t, sin t) , 0 ≤ t ≤ π

2
Compute

∫
γ
z dz f(z) = z.

γ′(t) = (− sin t, cos t) = (x′(t), y′(x))

f = u+ iv = x+ iy

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

See pictures.
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Note: If we went all the way around the unir circle, a = 0, b = 2π∫
γ

z dz = 0

Simplified Notation:
Let γ(t) = (x(t), y(t)) ∈ R2 ⇐⇒ C 3 z(t) = x(t) + iy(t)
Complex-valued function of t ∈ [a, b]
Define: z′(t) = x′(t) + iy′(t)
Make sense because γ′(t) = (x′(t), y′(t))
Proposition: ∫

γ

f dz =

∫ b

a

f (z (θ)) z′(t) dt

Proof:

=

∫ b

a

[u(x(t), y(t)) + iv(x(t), y(t))] [x′(t) + iy′(t)] dt

=

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

=

∫
γ

f dz

Example:
See Pictures.
Theorem: (Analogue of fundamental theorem of calculus)
Let f : Ω → C be continuous. Suppose ∃ F : Ω → C analytic on Ω with
F ′(t) = f(z),∀z ∈ Ω.
Then ∫

γ

f dz =

∫
γ

F ′dz = F (z1)− F (z0)

If γ(a) = z0, γ(b) = z1

Not only does this give us an easy way to compute, but it says that
∫
γ
F ′dz is

independent of the path from z0 to z1 provided the path lies entirely in Ω.
Proof:
f = u+ iv, F = U + iV

F ′ = Ux + iVx = Vy − iUx

(Cauchy-Riemann)
f = u+ iv, u = Ux = Vy, v = Vx = −Uy

γ(b) = z1 = x1 + iy1, γ(a) = z0 = x0 + iy0
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∫
γ

f dz =

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

=

∫
γ

(Ux dx+ Uy dy) + i

∫
γ

(Vx dx+ Vy dy)

=

∫
γ

(∇U) · dr + i

∫
γ

(∇V ) · dr

= U(x1, y1)− U(x0, y0) + i (V (x1, y1)− V (x0, y0))

= F (z1)− F (z0)

Example Revisited:
Same answer for any path from 1 to i.
See pictures.
Corollary:
Suppose ∃ F : Ω→ C analytic such that F ′ = f on Ω.
Then ∫

γ

f dz = 0

for any closed curve γ lying-entirely in Ω.
Example:

f(z) = z

does not appear to have an antiderivative.

γ1(t) = (t, t) , 0 ≤ t ≤ 1

γ2(t) =
(
t, t2

)
, 0 ≤ t ≤ 1

f(z) = z, f(z(t)) = z(t)
z(t) = t+ it, z′(t) = (1 + i)

∫
γ1

z dt =

∫ 1

0

(t− it) (1 + i) dt

=

∫ 1

0

(t− it+ it+ t) dt

= t2
∣∣∣1
0

= 1

f(z(t)) = x(t)− iy(t) = t− it2, γ′2(t) = (1− i2t)

∫
γ2

z dz =

∫ 1

0

(
t− it2

)
(1 + i2t) dt

= ...

We can see that they are not equal.
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One more example:

f(z) =
1

z
,Ω ∈ C \ {0}

Let γ = circle centred at origin with radius R > 0, (counterclockwise).
Compute

∫
γ

1
zdz.∫

γ
1
zdz = 2πi

I did this in A3.
Independent of R!
Remark:
This proves (which we already knew) that does not exist a function F : Ω→ C
analytic on Ω with F ′ = f = 1

z
Example 2:
Let C(z0;R) be the circle of radius R centered at z0 such that 0 /∈ D(z0;R).
then ∫

C(z0;R)

1

z
dz = 0

Because we can remove a ray emanating from the origin to get a domain con-
taining D(z0;R) on which 1

z does have an antiderivative (a branch of logarithm).
Midterm ends here!! Up to including 4.1.2.
The M-L inequality (Very important)
Theorem:
Let Γ be a curve in C, let f be a continuous complex valued function defined
on Γ (usually it will be defined on a domain containing Γ).
Let L = Length of γ.
Suppose that |f(z)| ≤ M, ∀z on Γ. (there always exists such an M because

|f(z)| =

√
(u(x, y))

2
+ (v(x, y))

2
is continuous function on a compact set Γ =

γ([a, b]))
Extreme value theorem.
Then: ∣∣∣∣∫

Γ

fdz

∣∣∣∣ ≤ML

Proof:

C 3 I =

∫
Γ

fdz = |I| eiω

for some phase eiω unique if I 6= 0.
(If I = 0, nothing to prove)
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|I|eiω =

∫ b

a

f(z(t))z′(t)dt

R 3 |I| =
∫ b

a

e−iωf(z(t))z′(t)dt

=

∫ b

a

U(t)dt+ i

∫ b

a

V (t)dt

We have ∫ b

a

U(t)dt = |I|,
∫ b

a

V (t)dt = 0

|I| =
∫ b

a

U(t)dt ≤
∫ b

a

|U(t)|dt

|U(t)| ≤ |e−iωf(z(t))z′(t)|
= |f(z(t))||z′(t)|

≤M
√

(x′(t))2 + (y′(t))
2

|I| ≤
∫ b

a

M

√
(x′(t))2 + (y′(t))

2
dt = ML

Example: ∫
Γ

z2dz

L = Lengthγ =
√

2

|f(z)| = |z2| = |z|2 ≤
(√

2
)2

= 2 = M

|
∫

Γ

z2dz| ≤ 2
√

2

by ML inequality.
We can explicitly compute this

=
z3

3

∣∣∣1+i

0
=

2i

3
− 2

3

|
∫

Γ

z2dz| =
√

4

9
+

4

9
=

2
√

2

3
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ML inequality is not used in practice or explicit integrals.
Example: (of the type where will use ML inequality to prove theroems)
Let f : Ω = D(z0;R) \ {z0} → C (punctured open disc) be continuous on Ω.
Suppose |f(z)| ≤M on Ω.
Suppose further that

Ir =

∫
C(z0;r)

f dz

is independent of r for 0 < r < R.
(This seemingly artificial hypothesis will arise often)
Claim: Ir = 0,∀r ∈ (0, R)
Proof:

|Ir| ≤M2πr, ∀r ∈ (0, R)

⇒ |Ir| = 0

So Ir = 0
QED. ∫

C(0;R)

1

z
dz = 2πi

independent of R, but 1
z is not bounded on D(0, R) \ {0}.

Cauchy Integral Theorem
Theorem:
Let Ω be a domain, let f : Ω→ C be analytic on Ω.
Let Γ be a Jordan curve (simple, closed) lying entirely in Ω whose interior also
lies in Ω.
Then ∫

Γ

fdz = 0

(If f = F ′ for some analytic F , then
∫
γ
fdz = 0 even if γ encircles ”holes”)

We don’t assume that f = F ′ but we do assume f analytic.
Proof:
Let D = interior of Γ, D is a Jordan domain, ∂D = Γ.
We need to apply Green’s Theorem.

∫
Γ

fdz =

∫
Γ=∂D

(u+ iv) (dx+ idy)

=

∫
∂D

(udx− vdy) + i

∫
∂D

(vdx+ udy)

=

∫∫
D

[(−v)x − uy]dA+ i

∫∫
D

(ux − vy)dA

= 0
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by Cauchy-Riemann equations.
Note:
The assumption that Γ does not encircle any ”holes” is necessary.
Ω = C \ {0} f(z) = 1

z analytic on Ω.
Picture here?
Γ is a Jordan curve.∫

Γ
fdz = 2πi 6= 0

Applications: ∫
Γ

cos(sin z)dz = 0∫
Γ

ez
2

dz = 0

for any simple closed curve Γ in C.
because integrands are analytic on all of C.
Notice: We can’t find explicit anti-derivatives!
Generalizations of Cauchy Integral Theorems (CIT):
Consider when the curve Γ is closed but not simple (it has self-intersections)
Picture here!
Suppose Γ lies inside Ω and the interior of each ”lobe” lies inside Ω.
Then Γ = Γ1 + Γ2 when Γ1,Γ2 are Jordan curves whose interior lies inside Ω.∫

Γ

fdz =

∫
Γ1

fdz +

∫
Γ2

fdz

CIT -¿ 0 + 0 = 0
More generalization next time.
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Last time:
Cauchy Integral Theorem (CIT)
Let f : Ω→ C be analytic on Ω. Let Γ be a Jordan curve (simple closed) lying
in Ω and whose interior lies in Ω.
Then ∫

Γ

fdz = 0

Generalization of the Cauchy Integral Theorem
Last time we argued that the CIT still holds for closed curves with a finite
number of self-intersection. (non-simple) as long as all the ”interiors” of Γ lies
inside Ω.
To make a ”precise” statement of this, requires the language of homotopy of
path.
We’ll give a less precise statement.
Strong Cauchy Integral Theorem (SCIT)
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Let Ω be a domain, f : Ω→ C analytic on Ω.
Let Γ be a closed curve lying in Ω (Not necessary simple) which can be shrunk
to a point continuously without leaving Ω.
Then

∫
Γ
fdz = 0.

Example:
See pictures.
Important Special Case of SCIT:
Suppose Ω is simply-connected, (it has ”no holes”).
Ω is simply-connected ⇐⇒ any closed curve Γ in Ω can be shrunk to a point
without leaving Ω.
Aside:
If Ω is a Jordan domain, then Ω is simply-connected if and only if Ω is 1-
connected. (∂Ω consists of single Jordan curve)
But the definition of simple-connectedness for a domain Ω does not require Ω
to be a Jordan domain. (It doesn’t even have to be bounded)
Corollary of SCIT:
If Ω is a simply-connected domain, and f : Ω→ C analytic on Ω.
Then

∫
Γ
fdz = 0 for any closed curve Γ lying in Ω.

Another Corollary of SCIT:
Let Ω be a domain, let f : Ω→ C be analytic on Ω.
Let Γ1,Γ2 be two (piecewise smooth) curves in Ω from z0 to z1, such that all
points ”between the two curves” lie in Ω.
Then ∫

Γ1

fdz =

∫
Γ2

fdz

”independence of path”
Proof:
Apply SCIT to Γ1 + Γ−1

2 .
Corollary
Let Ω be a simply-connected domain. Let f : Ω → C be analytic on Ω. Let
z0, z ∈ Ω. Define

F : Ω→ C

by

F (z) =

∫ z

z0

f(w)dw

for any curve in Ω from z0 to z.
Then F is well-defined and continous on Ω.
Proof:
Well-defined is immediate from previous Corollary. We need to show F : Ω→ C
is continuous on Ω.
Let z1 ∈ Ω, we need to show that F is continous at z1.
So we need to show that

lim
z→z1

F (z) = F (z1) ⇐⇒ lim
z→z1

(F (z)− F (z1)) = 0
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|F (z)− F (z1)| = |
∫ z

z0

f(w)dw −
∫ z

z0

f(w)dw|

= |
∫ z

z0

f(w)dw +

∫ z0

z1

f(w)dw|

= |
∫ z

z1

f(w)dw|

≤ sup
w on this curve z1→z

(length of this curve)

f is continous on Ω any curve is a continuous set, so f is boudned on the curve.
So by Squeeze Theorem,

lim
z→z1

F (z) = F (z1)

So F is continous on Ω.
In fact, it is true that F is analytic and F ′ = f . We will prove a more general
result:
Theorem:
Let f : C → C be continuous on Ω and suppose F (z) =

∫ z
z0
f(w)dw is inde-

pendent of path for any polygonal (Piecewise linear) paths from z0 to z in
Ω.
Then F is analytic on Ω and F ′ = f .
Note:
If f is analytic and Ω is simply-connected, then∫ z

z0

f(w)dw

is independent of path for any path in Ω from z0 to z.
Before we prove this, let’s state an amazing corollary.
Corollary:
If f : Ω→ C is analytic on a simply-connected domain Ω.
Then f = F ′ where F (z) =

∫ z
z0
f(w)dw for any path from z0 to z in Ω.

(So on a simply-connected domain, any analytic function is the complex deriva-
tive of analytic functions)

d

dz

∫ z

z0

f(w)dw = f(z)

”Fundamental Theorem of Calculus”
Proof:
Let z1 ∈ Ω.
Need to show limz→z1 of above is f(z1)
Pictures.
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18 Feburary 24rd

In pictures.

19 Feburary 26th

Cauchy Integral Formula
Let f : Ω→ C be analytic on a domain Ω.
Let Γ be a Jordan curve in R with int(Γ) ⊆ Ω.
Let z0 ∈ int (Γ)

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz

Characterization of complex differentiability (analyticity) using real partial deriva-
tive.
Aside:
Let f(z) = u(x, y) + iv(x, y), u, v ∈ C1 (Ω)
If f is analytic on Ω, then

∂f

∂z
= ux + ivx = vy − ivx

=
1

2
(ux + ivx) +

1

2
(vy − iuy)

=
1

2

(
∂

∂x
− i ∂

∂y

)
u+

1

2

(
∂

∂x
− i ∂

∂y

)
(iv)

=
1

2

(
∂

∂x
− i ∂

∂y

)
(u+ iv)

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
when f is analytic.
Define: (Just notation)

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
This is a complex-valued first order linear differential operator.
Suppose as before f = u+ iv, u, v ∈ C1

Compute
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∂f

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=
1

2
(ux + ivx) +

i

2
(uy + ivy)

=
1

2
(ux − vy) +

i

2
(vx + uy)

So ∂f
∂z = 0

Cauchy-Riemann equations are satisfied.
f is analytic.
Summary:
f = u+ iv, u, v ∈ C1 (Ω)

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
∂

∂z
=

See pictures.
Next, we prove a complex version of ”differentiation under integral sign”.
Lemmas:
Let Ω be a domain. Let Γ be a curve (not necessarily simple or closed.)
Such that Γ ∩ Ω = ∅. Let F (z, ζ) be continous ∀z ∈ Γ, ζ ∈ Ω and analytic in
ζ ∈ Ω
So ∂F

∂ζ (z, ζ) is continuous ∀z ∈ Γ, ζ ∈ Ω.

Then
∫

Γ
F (z, ζ) is analytic ∀ζ ∈ Ω.

and

d

dζ

∫
Γ

F (z, ζ)dz =

∫
Γ

∂F

∂ζ
(z, ζ)dz

Proof:
Let z = z(s) on Γ, a ≤ s ≤ b.
See pictures.
. . .
Let’s apply this to Cauchy Integral Formula.
Let f : Ω→ C be analytic on a domain Ω.
Let Γ be a Jordan curve in Ω such that int (Γ) ⊆ Ω and let ζ ∈ int (Γ)
Then

f(ζ) =
1

2πi

∫
Γ

f(z)

z − ζ
dz

Integrand is f(z)
z−ζ is continous ∀z ∈ Γ and ζ ∈ int (Γ) and it is analytic in

ζ ∈ int (Γ) with
∂

∂ζ

(
f(z)

z − ζ

)
=

f(z)

(z − ζ)2
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Continuous for all z ∈ Γ, ζ ∈ int (Γ)
We can apply the lemma.
Ω in lemma ⇔

∫
(Γ) here.

Lemma says f(ζ) = 1
2πi

∫
Γ
f(z)
z−ζ dz is analytic in ζ and

∂

∂ζ

[
1

2πi

∫
Γ

f(z)

z − ζ
dz

]
=

1

2πi

∫
Γ

f(z)

(z − ζ)
2 dz

f ′(ζ) =
1

2πi

∫
Γ

f(z)

(z − ζ)2
dz

First Generated Cauchy Integral Formula.
Now, do it again.

∂

∂ζ
f ′(ζ) = f ′′(ζ)

=
1

2πi

∫
Γ

∂

∂ζ

(
f(z)

(z − ζ)2

)
dz

=
2

2πi

∫
Γ

f(z)

(z − ζ)3
dz

Keep repeating:
We’ve proved f is infinitely (complex) differentiable at all ζ ∈ int (Γ), and

f (n)(ζ) =
n!

2πi

∫
Γ

f(z)

(z − ζ)n+1
dz

Notice: n = 0 gives original CIF.
What we have shown is:
Suppose f is complex-valued function on some domain Ω, and its analytic at
ζ ∈ Ω.
Then, it’s analytic on D(ζ, ε) for some ε > 0.
Apply GCIF to Γ = C(ζ, ε2 )
⇒ f is infinitely complex differentiable at ζ.
”Applications” ∫

Γ

f(z)

(z − ζ)n+1
dz =

2πi

n!
f (n)(ζ)

allows us to compute certain integrals of this form for f analytic.
Exercise:
ζ = 0, n = 5, f(z) = sin(z) analytic everywhere.
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∫
|z|=1

sin |z|
z6

dz =

∫
Γ

sin(z)

(z − 0)5+1
dz

=
2πi

5!
f (5)(0)

=
2πi

120
cos(0)

=
πi

60

∫
Γ

tan( z2 )(
z − π

2

)2 dz =

∫
Γ

f(z)

(z − ζ)1+1
dz

See pictures.

20 Feburary 28th

Generalized Cauchy Integral Formula
Let f : Ω→ C be analytic on a domain Ω. Then f is infinitely differentiable on
Ω.
Let Γ be a Jordan curve in Ω with int (Γ) ⊆ Ω.
Let z0 ∈ int (Γ)
Then

f (n)(z0) =
n!

2πi

∫
Γ

f(z)

(z − z0)n+1
dz

Can be used to evaluate certain integrals.
Example: ∫

Γ

cosh(z)

z4
dz

x = ±2, y = ±2. A square.
f(z) = cosh(z), analytic everywhere.
ζ = 0, n = 3 ∫

Γ

cosh(z)

z4
dz =

2πi

3!
f (3)(0) =

2πi

6
sinh(0) = 0

We notice that cosh(z)
z4 is not analytic in int(Γ).

So
∫

Γ
h(z)dz = 0 6⇒ h analytic in int(Γ)

The converse is the CIT.
Corollary:
Let f = u+ iv be analytic on a domain Ω.
Then u, v are harmonic on Ω.
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Proof:
We already showed this is true provided u, v ∈ C2 (Ω).
But now we know this is always true because f ′′′ exists so f ′′ continuous on
Ω.
f = u+ iv
f ′ = ux + ivx = vy − iuy
f ′′ = uxx + ivyy = vyx − iuyx = vxy − iuxy = −uyy − ivyx
continous on Ω.
uxx, uxy, uyx, uyy, vxx, vxy, vyx, vyy ∈ C2 (Ω)
⇒ uxx + uyy = 0, vxx + vyy = 0

uxx + uyy

=(ux)x + u(y)y

=(vy)x − (vx)y = 0

So if f = u+ iv is analytic on Ω, then u, v ∈ C∞ (Ω) and harmonic on Ω.
Circumferential Mean Value Property
Let f : Ω→ C be analytic on a domain Ω. Let D(z0), R ⊆ Ω.
Then

f(z0) =
1

2π

∫ 2π

0

(
f(z0) +Reiθ

)
dθ

Average of f over C(z0, R) equals value at centre.
Proof:

f(z) = u(z) + iv(z)

Harmonic on Ω

f(z0) = u(z0) + iv(z0) =
1

2π

∫ 2π

0

u(z0 +Reiθ)dθ + i

∫ 2pi

0

v(z0 +Reiθ)dQ

=
1

2π

∫ 2π

0

f(z0 +Reiθ)dθ

Remarks:
On A4, you give a different proof using CIF.
Solid Mean Value Property
f : Ω→ C analytic on a domain Ω.
D(z0, R) ⊆ Ω.
Then,

f(z0) =
1

πR2

∫∫
D(z0,R)

fdA

Proof:
Apply Solid MVP to u, v (harmonic)
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f(z0) = u(z0) + iv(z0)

=
1

πR2

∫∫
D

udA+ i
1

πR2

∫∫
D

vdA

=
1

πR2

∫∫
D

fdA

Example:

∫ 2π

0

log(2 + εeiθ)dθ = 2π log 2 > 0

Using CMVP ∫
|z−2|=ε

log(z)dz = 0

Using CIT
Because log is analytic on an open set containing D(2, ε).
Let’s see explicitly that these are not the same.

z(θ) = 2 + εeiθ, 0 ≤ θ ≤ 2π

Parametrizes C(2; ε).

∫
C(2;ε)

log(z)dz =

∫ 2π

0

log(z(θ))z′(θ)dθ

=

∫ 2π

0

log(2 + εeiθ)εieiθdθ

Example: ∫∫
D(0;1)

cos(z)dA

Using the SMVP:

π(1)2 cos(0) = π

Maximum / Minimum Principles
Recall: The strong / weak maximum / minimum principles for harmonic
functions.
SMP: Let Ω be a domain. A non-constant harmonic function on Ω does not
attain a global maximum nor a global minimum on Ω.

68



WMP: Let Ω be a bounded domain. Suppose u ∈ C2 (Ω) ∩ C0
(
Ω
)

and har-
monic in Ω.
If u is non-constant, then u attains its global maximum and global minimum
on ∂Ω only.
These results do not directly generalize to analytic functions (which are complex-
valued!) because C is not natually ordered.
It does not make sense z, w ∈ C, z ≤ w.
Given z, w ∈ C, |z|, |w| are real.
So |z| ≤ |w| makes sense.
Definition:
Let Ω be a domain. Let f : Ω→ C be a function on Ω.
We say f attains a maximum modulus on Ω if ∃z0 ∈ Ω such that |f(z)| ≤
|f(z0)|,∀z ∈ Ω.
(i. e if the real-valued function z 7→ |f(z)| has a global maximum at z0)
Strong Maximimum Modulus Principle
Ω a domain.
f : Ω → C analytic on Ω, and non-constant. Then |f(z)| does not attain a
global max on Ω.
Proof:
If f(Ω) = {w ∈ C, w = f(z) for some z ∈ Ω} is unbounded, then the result is
clear.
So we can assume f(Ω) is bounded.
Suppose f does attain a maximum modulus on Ω.
So ∃z0 ∈ Ω such that

0 ≤ |f(z)| ≤ |f(z0)|,∀z ∈ Ω

Note:
f(z0) 6= 0 (if so, f(z) = 0,∀t ∈ Ω, but f is nonconstant)
So |f(z0)| > 0, f(z0) 6= 0.
Define g(z) = f(z) + c · f(z0) where c is real and c ≥ 1.
Triangle Inequality:

|g(z)| ≥ c · |f(z0)| − |f(z)|
= (c− 1)|f(z0)|+ |f(z0)| − |f(z)| ≥ (c− 1)|f(z0)| > 0.

So g(z) 6= 0,∀z ∈ Ω.
g is analytic on Ω. g(z) 6= 0,∀z ∈ Ω.
We will show (next time) that g also has a max modulus at z0. Then we will
get a contradiction.

21 March 2nd

Strong Maximum Modulus Principle
Let Ω ⊆ C be a domain.
Let f : Ω→ C be analytic and non-constant.
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Then f does not attain a global maximum modulus on Ω.
(i.e There does not exist z0 ∈ Ω with |f(z)| ≤ |f(z0)|,∀z ∈ Ω)
Proof:
Last time:
It is clear if f(Ω) is unbounded. Assume f(Ω) is bounded and such a z0 ∈ Ω
exists.

|f(z)| ≤ |f(z0)|,∀z ∈ Ω

So f(z0) 6= 0.
Let g(z) = f(z) + cf(z0), c > 1

|g(z)| ≥ c|f(z0)| − |f(z)| > 0

Claim: g has a maximum modulus at z0.
∀z ∈ Ω

|g(z)| ≤ |f(z)|+ c|f(z0)| ≤ |f(z0)|+ c|f(z0)| = (1 + c)|f(z0)| = |g(z0)|

Notice: g is analytic on Ω, g(z) 6= 0,∀z ∈ Ω, and |g(z)| ≤ |g(z0)|,∀z ∈ Ω.
We need to get a contradiction.
We can define a branch of the logarithm such that g(Ω) lies in its domain.
Let h(z) = log(g(z)), this is analytic on Ω.

log |g(z)|+ i arg(g(z))

The real and imaginary parts are harmonic on its domain.
log |g(z)| is harmonic on Ω and attains a global maximum at z0. (Because
log(0,∞)→ R is strictly increasing and |g(z)| has a global max at z0)
By Strong Maximum Principle for harmonic functions, applied to the function
log |g(z)|, we conclude that |g(z)| is constant.
On earlier assignment, you proved if g is analytic on Ω and |g(z)| is constant,
then g is constant.
Contradiction! So z0 does not exist.
(Need to take c sufficiently large so that g(Ω) lies on one side of a line through
origin. We can do this because g(Ω) is bounded)
Weak Maximum Modulus Principle
Let Ω be a bounded domain and f : Ω→ C continuous on Ω and analytic on
Ω.
Then f attains its global maximum modulus on Ω only at points in ∂Ω.
(By Extreme Value Theorem and Strong Maximum Modulus Principle)
Minimum Modulus Principle
Let Ω be a domain. Let f : Ω → C be non-constant and analytic on Ω, with
f(z) 6= 0,∀z ∈ Ω.
Then f does not attain a global minimum modulus anywhere on Ω.
If there exist z0 ∈ Ω with f(z0) = 0, then f does attain a global minimum
modulus at z0.
Proof:
Since f(z) 6= 0,∀z ∈ Ω.
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h(z) =
1

f(z)

is analytic on Ω.

|h(z)| = 1

|f(z)|
has a global maximum
Then, |f(z)| has global maximum which it doesn’t by SMMP.
Proposition:
Let f, g be analytic on Ω (domain).
Let Γ be a Jordan curve in Ω with int(Γ) ⊆ Ω.
If f(z) = g(z),∀z ∈ Γ, then f(z) = g(z),∀z ∈ int(Γ)
Proof:
h(z) = f(z)−g(z) = 0 on Γ = ∂(intΓ) |h(z)| = 0,∀t ∈ intΓ f(z) = g(z) on intΓ.
Recall Liouville’s Theorem for harmonic functions:
Let u : R2 → R be harmonic on the entire plane (entire harmonic).
If u is non-constant, u is unbounded.
Theorem: Liouville’s Theorem for entire analytic functions.
Theorem: Let f : C→ C be analytic on entire plane (entire analytic)
If f is non-constant, it implies that f is unbounded.
Equivalence: If f is bounded, it implies that f is constant.
Proof: Suppose f : C → C is analytic and |f(z)| ≤ M∀z. |u(z)| ≤ M, |v(z)| ≤
M,∀z
Using Liouville for entire harmonic.
u, v constant. So f = u+ iv is constant.
Fundamental Theorem of Algebra
Theorem: Let p(z) = anz

n + an−1z
n−1 + · · · + a1z + a0 be a polynomial of

degree n with complex coefficients. ai ∈ C, i = 0, . . . , n, an 6= 0
Then there exist z0 ∈ C such that p(z0) = 0.
(i.e every non-constant polynomial over C has at least root in C hence at most
n roots)
Proof:
First, we claim that given any positive real number, M > 0, ∃R > 0 such that
|p(z)| ≥M, ∀|z| ≥ R
(”p” goes to infinity as z →∞)
Proof of claim:
Choose k > 0 such that∣∣∣an−k

zk

∣∣∣ ≤ |an|
2n

,∀|z| ≥ R, k = 1, . . . , n

(Take R ≥ maxk=1

[(
2n|an−k|
|an|

) 1
k

]
, an 6= 0)

Then |z| ≥ R⇒ |z|k ≥ 2n|an−k|
|an|
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By Triangle inequality,

|an−1

z
+
an−2

z2
+ · · ·+ a0

zn
| ≤ n|an|

2n
=
|an|

2

for |z| ≥ R.

|an−k
zk
| ≤ |an|

2n

k = 1, . . . , n

P (z) = zn(an +
an−1

z
+
an−2

z2
+ · · ·+ a0

zn
)

|P (z)| = |z|n
∣∣∣an +

(an−1

z
+ · · ·+ a0

zn

)∣∣∣
≥ |z|n

(
|an| =

|an|
2

= |z|n |an|
2

)
for |z| ≥ R.
Using triangle inequality.

Let R ≥
(

2M
|an|

) 1
n

|z| ≥ R⇒ |z|n ≥ Rn = 2M
|an|

...
See pictures.

22 March 4th

Liouville’s Theorem for entire analytic functions
Let f : C→ C be analytic on the entire plane C if f is bounded⇒ f is constant.
Equivalently if f is non-constant ⇒ f is unbounded.
Example:
Let f : C→ C be entire analytic and suppose that |f(z)| ≤ |ez|,∀z ∈ C.
Then f(z) = c · ez for some c ∈ C with |c| ≤ 1.
Proof:
h(z) = f(z)

ez is entire analytic. By hypothesis,

|h(z)| = |f(z)|
|ez|

≤ 1

By Liouville, h(z) = c, |c| = |h(z)| ≤ 1.
You may have heard that a polynomial grows slower than an exponential in real
analysis.
Suppose f(z) is a polynomial, let z = x be real and very negative, |f(x)| is
large, but |ex| is small.

|f(x)| 6≤ |ex|
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for x large negative.
The Cauchy Inequalities for f (n)(z0)
Let f : Ω→ C be analytic on Ω. Let D(z0;R) ⊆ Ω.
Let M(z0;R) = maxC(z0;R) |f(z)|.
Then,

|f (n)(z0)| ≤ n!M(z0;R)

Rn

Proof:
By GCIF,

f (n)(z0) =
n!

2πi

∫
C(z0;R)

f(z)

(z − z0)
n+1 dz

By ML inequality,

|f (n)(z0)| ≤ n!

2π

M(z0;R)

Rn+1
2πR

= n!
M(z0;R)

Rn

Remark: Normally, bounds on derivatives of a function are used to obtain
bounds on the function itself.
This result shows that for analytic functions, we can also do the opposite.
Bounds on the function yield bounds on all of its derivatives.
Corollary of Cauchy inequality
A different proof of Liouville Theorem.
Suppose f is entire analytic and bounded.

|f(z)| ≤M,∀z ∈ C

M(z0;R) ≤M, ∀z0 ∈ C,∀R > 0

By Cauchy Inequality for n = 1,

|f ′(z0)| ≤ M

R

for any R > 0, ⇒ f ′(z0) = 0,∀z0 ⇒ f const.
Morera’s Theorem
Let R : Ω→ C be continuous on a domain Ω, and suppose that

∫
Γ
f(z)dz = 0

for any Jordan curve Γ lying in Ω.
Then f is analytic on Ω.
(TEXT INCORRECTLY SAYS WE NEED int(Γ) ⊆ Ω)
Remark: If int(Γ) ⊆ Ω and f is analytic, then

∫
Γ
f(z)dz = 0 by CIT.

So Morera’s Theorem is a kind of converse to CIT.
Remark:
Morera’s Theorem gives a sufficient but not necessary condition for analyt-
icity.
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Example:
f(z) = 1

z is analytic on Ω = C \ {0}, but
∫

Γ
f(z)dz 6= 0 if Γ encircles origin.

Proof: ∫
Γ

f(z)dz = 0,∀Jordan curvesΓ in Ω

⇐⇒
∫ z

z0

f(z)dz is path independent for any path from z0 to z lying in Ω

By earlier theorem, if
∫ z
z0
f(ζ)dζ is path-independent for all polygonal (piecewise-

linear) paths in Ω, then

F (z) =

∫ z

z0

f(ζ)dζ

is analytic on Ω and F ′ = f
Now we use the fact that:
Since F is analytic, F is infinitely differentiable and all its derivatives are ana-
lytic on Ω.
(This was a corollary of GCIF.)
So F ′ = f is differentiable on Ω.
F ′′ = f ′ is differentiable, hence continous on Ω.
So f is analytic on Ω.
From the proof, it is clear that the hypotheses can be weakened to∫

Γ

f(z)dz = 0

for any closed polygonal (piecewise-linear) curve in Ω.
It then follows that we can further restrict to triangles.
Application of Morera’s Theorem
Removable Singularities.
Let D = D(z0;R) be an open disc centred at z0 ∈ C.
Suppose f : D → C is continuous on D and analytic on D \ {z0} (punctured
disc).
Then f is also analytic at z0.
Proof:
Since f is continous on D,

∫
Γ
f(z)dz exists for any Jordan curve Γ in D, There

are three cases.

1. z0 6∈ int(Γ), z0 6 inΓ

2. z0 ∈ int(Γ)

3. z0 ∈ Γ
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So if we can show
∫

Γ
f(z)dz = 0 in all three cases, then Morera’s Theorem tells

us f is analytic on D.
If z0 /∈ Γ, z0 /∈ int(Γ). ∫

Γ

f(z)dz = 0

by CIT.
Because f is analytic on open set containing Γ, int (Γ).
Case 2:
z0 ∈ int(Γ). By earlier results,∫

Γ

f(z)dz =

∫
C(z0;ε)

f(z)dz

provided ε is sufficiently small so that D(z0; ε) ⊆ int(Γ).
By ML, ∣∣∣∣∣

∫
C(z0;ε)

f(z)dz

∣∣∣∣∣ ≤M2πε

M : max of f on D(z0; R2 ).

Let ε < R
2 .

For all ε sufficiently small,∫
Γ

f(z)dz =

∫
C(z0;ε)

f(z)dz = 0

Case 3: z0 ∈ Γ.
Let Γ̃ differ from Γ, only ”near z0” such that Γ̃ is of case 1 or 2.∫

Γ̃

f(z)dz = 0∫
Γ

f(z)dz −
∫

Γ̃

dz =

∫
B

f(z)dz

(By continuity and ML inequality).
So
∫

Γ
f(z)dz = 0 for any Jordan curve Γ in D.

So f is analytic on D.
Later in this course, we will give another proof of ”Removable singularities”
using power series.
Schwarz Lemma (Shows again how rigid analytic functions are)
Let D = D(0, 1) be the open unit disc centered at origin.
Let f : D → C be analytic on D and such that

1. f(0) = 0

2. |f(z)| ≤ 1,∀z ∈ D.

(2) says f maps open unit disc into the closed unit disc.

75



Then, we must have
|f(z)| ≤ |z|,∀z ∈ D

and
|f ′(0)| = 1

.
Moreover, if equality holds in (A) for some z ∈ D, or equality holds for B. (i.
e) if ∃z ∈ Dz 6=0 such that |f(z)| = |z| or if |f ′(0)| = 1.
Then f(z) = eiθz for some constant eiφ.
Hence |f(z)| = |z|,∀z ∈ D and |f ′(z)| = 1,∀z ∈ D.
Rotation about origin by angle φ.

23 May 6th

Recall: Removable Singularities
Let D : D(z0;R) if f : D → C is continuous on D and analytic in D \{z0}, then
it is analytic on D.
Schwarz Lemma
Let D = D(0, 1) be the unit open disc.
Let f : D → C be analytic on D such that

1. f(0) = 0

2. |f(z)| ≤ 1,∀z ∈ D

(Maps open unit disc into the closed unit disc).
Then

1. |f(z)| ≤ |z|,∀z ∈ D

2. |f ′(0)| ≤ 1

Moreover, if equality holds in (A) for some z 6= 0 in D or if equality holds in
(B). Then

f(z) = eiθz

for some constant eiθ

Hence, |f ′(z)| = 1,∀z ∈ D, |f(z)| = |z|,∀z ∈ D.
Proof:
Define g : D → C by

g(z) =
f(z)

z

for z 6= 0.
g(0) = f ′(0)
By construction, g is analytic on D \ {0} and continuous on D.
Hence, by removable singularities, g is analytic on D.
Let 0 < r < 1, let Dr = D(0, r).
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By the weak maximum modulus principle, ∃zr ∈ ∂Dr = {z ∈ C, |z| = r} such
that |g(z)| ≤ |g(zr)|,∀z ∈ Dr.
But

|g(z)| ≤ |g(zr)| =
|f(zr)|
|zr|

≤ 1

r

We get |g(z)| ≤ 1
r ,∀z ∈ Dr |zr| = r, |f(z)| ≤ 1,∀z ∈ D

⇒ |g(z)| ≤ 1,∀z ∈ D

|g(0)| = |f ′(0)| ≤ 1

by (B)

z 6= 0, |g(z)| = f(z)

|z|
≤ 1,⇒ |f(z)| ≤ |z|,∀z ∈ D

Now, suppose equality holds in (A), for some z 6= 0 or equality holds in (B).
Then |g(z)| = 1 for some z ∈ D.
But |g(z)| ≤ 1,∀z, so g attains a global maximum on D.
By Strong Maximimum Modulus Principle, (since g analytic on D), we must
have g(z) = c constant.

|c| = |g(z)| = |g(z0)| = 1

So
c = eiθ

Chapter 5: Complex Series, and Power Series over C (and relation to
analyticity)
Review real series
Let ak ∈ R,∀k ≥ 0.

We say
∑∞
k=0 ak converges iff limN→∞

(∑N
k=0 ak

)
exists.

Since a sequence of real numbers has a limit iff it is a Cauchy Sequence, we get∑∞
k=0 ak converges iff ∀ε > 0,∃N ≥ 0 such that N ≤ n ≤ m.

Then |an + · · ·+ am| < ε, |Sm − Sn−1| < ε.
Complex Series
Let ck = ak + ibk ∈ C,∀k ≥ 0.

We say
∑∞
k=0 ck converges iff limN→∞

(∑N
k=0 ck

)
exists.

⇐⇒ lim
N→∞

(
N∑
k=0

ak

)
+ i

(
N∑
k=0

bk

)
exists.
If (ak, bk) ∈ R2 is a sequence, then (ak, bk)→k→∞ (a, b) ∈ R2.
Iff ak →k→∞ a and bk →k→∞ b
Because,

||(ak, bk)− (a, b)||2 = |ak − a|2 + |bk − b|2

Hence,
∑∞
k=0 ck converges iff both

∑∞
k=0 ak and

∑∞
k=0 bk converge.
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And
∞∑
k=0

(ak + ibk) =

( ∞∑
k=0

ak

)
+ i

( ∞∑
k=0

bk

)
Absolute COnvergence
Let

∑∞
k=0 ck be a complex series.

lim
N→∞

(
N∑
k=0

ck

)

We say the sequence converges absolutely iff
∑∞
k=0 |ck| converges.

limN→∞
∑N
k=0 |ck| exists.

Proof:
If
∑∞
k=0 ck converges absolutely, then it converges.

Proof:
Let ε > 0,∃N ≥ 0 such that N ≤ n ≤ m then

|cn|+ · · ·+ |cm| ≤ ε

Because
∑∞
k=0 |ck| converges.

By Triangle inequality,

|cn + · · ·+ cm| ≤ |cn|+ · · ·+ |cm| < ε,∀m ≥ n ≤ N

Hence
∑∞
k=0 ck converges.

There exist series that converge, but do not converge absolutely.
Example:

∞∑
k=0

(−1)k

k

Proposition:
Suppose

∑∞
k=0 ck converges, then

1. limk→∞ ck = 0 (Terms go to zero)

2. ∃M > 0 such that |ck| ≤M,∀k (Terms are bounded).

Both necessary for convergence but not sufficient.
Proof:
Let ε > 0,∃N ≥ 0 such that N ≤ n ≤ m.

|cn + · · ·+ cm| < ε

Take m = n.
|cn| < ε
⇒ limk→∞ ck = 0)
1 → 2 is trivial.
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Finally, Comparison Test
Let 0 ≤ ak ≤ bk,∀k ≥ 0.
If
∑∞
k=0 bk converges, then

∑∞
k=0 ak converges.

If
∑∞
k=0 ak diverges, then

∑∞
k=0 bk diverges.

(Exercise)
Power Series
Start with the most important example,
Let z ∈ C, consider

∑∞
k=0 z

k, (ck = zk) (Geometric Series)

SN = 1 + z + z2 + · · ·+ zN

zSn = z + z2 + · · ·+ zN + zN+1

Sn − zSn = 1− zN+1

Suppose z 6= 1, Sn = 1−zN+1

1−z
Suppose |z| < 1, limN→∞ zN+1 = 0.
Because |zN+1 − 0| = |zN+1| = |z|N+1 → 0 as N →∞.
Hence, if |z| < 1, then

∑∞
k=0 z

k converges to 1
1−z .

If |z| ≥ 1, then
|ck| = |zk| = |z|k ≥ 1,∀k

So ck 6→ 0.
Hence,

∑∞
k=0 ck does not converge.

Summary:

∞∑
k=0

zk

converges iff |z| < 1 and if so it converges to 1
1−z .

General Power Series
Let z0 ∈ C be fixed. A power series centred at z0 is a complex series of the form∑∞
k=0 ck(z − z0)k, ck ∈ C,∀k, z ∈ C. k non-ngeative integer.

Given a power series centred at z0, consider z0 and ck for k ≥ 0 as fixed. And
we want to ask for which z ∈ C does this series converge (absolutely?)
Lemma:
Suppose

∑∞
k=0 ck(z1 − z0)k converges for some z1 6= z0.

Then, the sum
∞∑
k=0

ck(z − z0)k

converges absolutely, ∀z ∈ C such that |z − z0| < |z1 − z0|
Proof:∑∞
k=0 ck(z1 − z0)k converges, so the terms are bounded.

∃M ≥ 0 such that |ck(z1 − z0)k| ≤M, ∀k.
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|ck(z − z0)k| = |ck(z1 − z0)k
(z − z0)k

(z1 − z0)k

= M

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣k
Let r = | z−z0z1−z0 | < 1 by hypothesis.

|ck(z − z0)k| ≤Mrk∑∞
k=0Mrk converges = M · 1

1−r , (r < 1)
Hence, by Comparison Test,

∞∑
k=0

|ck(z − z0)k|

converges.

24 March 9th

Let ck ∈ C,∀k ≥ 0, z0 ∈ C

∞∑
k=0

ck(z − z0)k

is called a complex power series centered at z0.
We are interested in which z ∈ C does

∞∑
k=0

ck(z − z0)k

converge?
Converge absolutely?
The series always converges absolutely at z = z0 (center).
Last time: Lemma
Suppose

∑∞
k=0 ck(z − z0)k converges at some z1 6= z0, then

∞∑
k=0

ck(z − z0)k

converges absolutely ∀z such that |z − z0| < |z1 − z0|.
It follows from the Lemma, if

∑∞
k=0 ck(z− z0)k diverges (does not converge) at

z2, then it diverges at all z such that |z − z0| > |z2 − z0|.
(Because if it did converge at z3, |z3 − z0| > |z2 − z0|) Then by the lemma, it
would converge absolutely at z2.
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Radius of Convergence
Theorem: Given a complex power series,

∞∑
k=0

ck(z − z0)k

centered at z0, there exists R ∈ [0,∞] such that if R = 0, then the series
converges only at z = z0

R = +∞, then the series converges absolutely for all z ∈ C.
If 0 < R <∞, then the series converges absolutely on D(z0;R) and diverges on
C \D(z0;R), (|z − z0| > R)
And anything can happen on ∂ (D(z0, R)) = {z : |z − z0| = R} (It might
converge absolutely or converge but not absolutely or diverge)
R is called the radius of convergence.
D(z0;R) is called the disc of convergence.
Proof:
If the series converges only at z0, set R = 0. Suppose there exists z1 6= z0 such
that the series converges at z1. LetR = sup{r > 0 : Series converges on D(z0, r)}
This is non-empty set of positive real numbers.
Supremum exists as an extended positive real number either 0 < R < ∞ or
R = +∞.
If R = +∞, then the series converges absolutely for all z ∈ C. Because if z ∈ C,
there exists w ∈ C, such that |z − z0| < |w − z0| and the series converges at w.
(Because R = +∞)
So by lemma, the series converges absolutely at z.
Finally, suppose 0 < R <∞.
If |z − z0| > R, then the series does not converge because if it did, then by

the lemma, it would converge (absolutely) on D(z0; R+|z−z0|
2 ), contradicting the

definition of R.
If |z − z0| < R, then by the definition of R as a supremum, the series converges

on D(z0; |z−z0|+R2 )
Hence, by the lemma, series converges absolutely at z.
Example:

∞∑
k=0

(z − z0)k, (ck = 1,∀k)

has radius of convergence R = 1

∞∑
k=0

wk

converges iff |w| < 1.
In this case, we have divergence on ∂ (D(z0; 1)).
Recall: The Ratio Test (Calculus 2)
Let

∑∞
k=0 bk be a series of positive real numbers bk > 0,∀k ≥ 0.

81



Suppose λ = limk→∞
bk+1

bk
exists (As a finite real number)

Then if λ < 1, the series converges.
If λ > 1, the series diverges.
If λ = 1, the test is inconclusive. (Anything can happen).
We use the ratio test to prove the following theorem.
Theorem:
Let

∑∞
k=0 ck (z − z0)

k
be a complex power series with ck 6= 0,∀k.

Suppose

L = lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣
exists in [0,∞].
Then the power series has radius of convergence R = 1

L .
i.e If L = 0, then R = +∞, if L = +∞, then R = 0, if 0 < L < R, then
0 < R = 1

L <∞.
Proof: Suppose z 6= z0.
Let bk =

∣∣ck(z − z0)k
∣∣ > 0,∀k ≥ 0∣∣∣∣bk+1

bk

∣∣∣∣ =

∣∣∣∣ck+1(z − z0)k+1

ck(z − z0)k

∣∣∣∣ =
|ck+1|
|ck|

|z − z0|

If limk→∞

∣∣∣ ck+1

ck

∣∣∣ = L

Then λ = limk→∞

∣∣∣ bk+1

bk

∣∣∣ = L · |z − z0|
By Ratio Test, series converge if λ = L|z − z0| < 1 ⇐⇒ |z − z0| < 1

L .
Diverges if λ = L|z − z0| > 1 ⇐⇒ |z − z0| > 1

L .
(If L = 0, λ = 0 for any z ∈ C⇒ R = +∞)
If L = +∞, λ = +∞, unless z = z0

Ratio Test still works.
Examples:

1.
∑∞
k=0(−1)k(z − 1)k

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣ (−1)k+1

(−1)k

∣∣∣∣ = 1

So R = 1
1 = 1

This series converges absolutely for all z such that |z−1| < 1 and diverges
if |z − 1| > 1 by the theorem.

In this example, we can say more.

∞∑
k=0

wk

, w = −(z − 1), wk = (−1)k(z − 1)k

Converges absolutely if |w| = |z − 1| < 1 and diverges if |w| ≥ 1.
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So in this case we have divergence on boudnary.

If |w| = |z − 1| < 1, then we know

∞∑
k=0

wk =
1

1− w

.

∞∑
k=0

(−1)k(z − 1)k =
1

1− (−(z − 1))
=

1

z

2.
∑∞
k=0

1
k!z

k, ck = 1
k!

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
1

(k+1)!

1
k!

∣∣∣∣∣ = lim
k→∞

1

k + 1
= 0

So by the theorem, R = +∞
So this series converges absolutely for all z ∈ C.

In fact, we will see next week that this converges to ez.

Uniform Convergence
This is a type of convergence for sequence of functions.
Let Ω be a domain, let fk : Ω → C be a sequence of complex-valued functions
on Ω.
We say that (fk) converges pointwise to a function f : Ω→ C iff ∀z ∈ Ω, fk(z)→
f(z) as k →∞.
This means for any ε > 0, there exists N ∈ N, depending on both of ε and
z ∈ Ω, such that if k ≥ N , then |fk(z)− f(z)| < ε.
N = N(ε, z)
Example:
fk(z) = 1 + z + z2 + · · ·+ zk, k ≥ 0.

lim
k→∞

fk(z) = f(z) =
1

1− z
iff |z| < 1.
N = N(ε) definitely depends on z.

25 March 11th

Last time: S ⊆ C a subset.
fn : S → C

functions n ≥ 0 We say fn converges pointwise to f : S → C if fn(z) →
f(z),∀z ∈ S.
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i.e. given z ∈ S and ε > 0, there exists N = N(z, ε) ∈ N such that n ≥ N ⇒
|fn(z)− f(z)| < ε.
Uniform Convergence
Let S ⊆ C be a subset.
Let fn : S → C, n ≥ 0 be a sequence of functions.
We say that (fn) converges uniformly to a function f : S → C iff ∀ε > 0,∃N =
N(ε) ∈ N such that if n ≥ N , then

|fn(z)− f(z)|ε, ∀z ∈ S

(Same rate)
i.e. We can choose one N (given ε) that works for every point in S.
Remark:
It could happen that (fn) does not converge uniformly to f on S, but does on
some proper subset S′ ⊂ S.
Basic idea is that uniform convergence preserves ”nice properties”.
Remark:
If (fn)→ f uniformly on S, then (fn)→ f pointwise.
Theorem:
Let Ω be domain, fn : Ω→ C be a sequence of function continuous on Ω.
Suppose (fn) converges uniformly to f : Ω→ C, then f is continuous on Ω.
”Uniform limit of continuous functions is continous”.
Proof:
Let z ∈ Ω, we need to show that f is continous at z0.
Let ε > 0,
By uniform convergence, there exists N ∈ N such that if n ≥ N , then

|fn(z)− f(z)| < ε

3
,∀z ∈ Ω

.

|f(z)− f(z0) = |f(z)− fn(z) + fn(z)− fn(z0) + fn(z0)− f(z0)|

≤ |f(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− f(z0)|

<
ε

3
+ |fn(z)− fn(z0)|+ ε

3
if n ≥ N

Since fn is continuous, there exists δ > 0 such that if |z − z0| < δ.
Then |fn(z)− fn(z0)| < ε

3 .
So |z − z0| < δ ⇒ |f(z)− f(z0)| < ε.
So f continuous at z0.
We will use this soon to show power series give continuous functions.
First, we consider interchange of uniform limit and complex line integral.
Theorem:
Let Γ be a curve in C. Let fn : Γ→ C be a sequence of functions continous on
Γ.
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(So the line integral,
∫

Γ
fn(z)dz makes sense).

Suppose (fn) converges uniformly to f : Γ→ C (By the previous theorem, f is
continuous on Γ, so

∫
Γ
f(z)dz makes sense.)

Then ∫
Γ

lim
n→∞

fn(z)dz =

∫
Γ

f(z)dz = lim
n→∞

∫
Γ

fn(z)dz

(Integral of uniform limit = limit of integrals)
Proof:
We need to show that given ε > 0, there exists N ∈ N such that n ≥ N ⇒ then

|
∫

Γ

fn(z)dz −
∫

Γ

f(z)dz| = |
∫

Γ

(fn(z)− f(z)) dz| < ε

Let L = Length (Γ) > 0.
By uniform convergence, exists N ∈ N such that n ≥ N , then

|fn(z)− f(z)| ≤ ε

L
,∀z ∈ Γ

By ML inequality,

|
∫

Γ

(fn(z)− f(z)) dz| ≤ ε

L
L

= ε

Apply this to power series, let
∑∞
k=0 ck(z − z0)k be a complex power series

centred at z0.
Suppose the radius of convergence R is positive, (include R = +∞).
Let D = D(z0;R), (if R = +∞, D = C), the series converges absolutely for all
z ∈ D.
The sum gives a function f(z) =

∑∞
k=0 ck(z − z0)k,∀z ∈ D

f : D → C, f(z) is the limit of the partial sums.

fn(z) =

n∑
k=0

ck(z − z0)k

all polynomials hence continous on D, (in fact, continous on C)
Theorem:
For any 0 < ρ < R, the sequence fn of partial sums converges uniformly to f
on the D(z0; ρ).
Remark:
In general, (fn) does not converge uniformly to f on D = D(z0;R). But this
theorem says that it always does on D(z0;R) if 0 < ρ < R.
Before we prove this, we need a lemma:
Lemma: Weierstrass M -test

85



Let S ⊆ C be a subset, let fn : S → C be sequence of functions. Let Mn > 0
such that

|fn(z)| ≤M, ∀z ∈ S

If
∑∞
n=0Mn converges, then

∑∞
n=0 fn(z) converges absolutely and uniformly on

S.
Proof:
Let ε > 0, there exists N such that m ≥ n ≥ N , then

Mn + · · ·+Mm < ε

Then,
|fn(z) + · · ·+ fm(z)| ≤ |fn(z)|+ · · ·+ |fm(z)|

Gives uniform convergence.

≤Mn + · · ·+Mm < ε

Gives absolute convergence.
Proof of Theorem:
Let 0 < ρ < R, let z1 ∈ D such that g < |z1 − z0| < R.
Series converges (absolutely) at z1, so the terms are bounded.
There exists M > 0, such that |ck(z1 − z0)k| ≤M, ∀k
Let z ∈ D(z0; ρ).
|z − z0| ≤ ρ.

|ck(z − z0)k| = |ck(z1 − z0)k|| (z − z0)k

(z1 − z0)k
|

≤M
∣∣∣ z − z0

z1 − z0

∣∣∣k ≤Mrk where r =
g

|z1 − z0|
< 1

Since r < 1,
∞∑
k=0

Mrk

converges.
So by Weierstrass M -test. (Mn = Mrn)
We get that

∞∑
k=0

ck(z − z0)k

converges absolutely and uniformly for all z ∈ D(z0; ρ).
Corollary: Let f(z) =

∑∞
k=0 ck(z − z0)k where z ∈ D = D(z0;R)

Then f is continuous at z.
Proof:
Let z ∈ D, choose ρ > 0 such that |z − z0| < ρ < R, z ∈ D(z0; ρ) ⊆ D(z0; ρ)
By the previous result, fn(z) =

∑∞
k=0 ck(z−z0)k (Continuous) converges uniformly

(and absolutely) on D(z0; ρ).
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Hence, f(z) = limn→∞ fn(z) is continuous at z.
On the assignment, we will show an example that

∑∞
k=0 ck(z − z0)k does not

have to converge uniformly on D(z0;R).
Next time: We will show power series are analytic on D(z0;R).

26 March 13th

Theorem:
Let fn : Ω→ C be a sequence of analytic functions on a domain Ω, suppose
(fn) converges uniformly to f : Ω→ C on Ω.
Then f is analytic on Ω.
(”Uniform limit of analytic functions is analytic”)
Proof:
Let z0 ∈ Ω. We want to show that f is analytic at z0.
This is equivalent to showing that f is analytic on an open disc D = D(z0; ε) ⊆
Ω.
Let Γ be a Jordan curve in D.∫

Γ

fn(z)dz = 0,∀n

By the Cauchy Integral Theorem because Γ ∪ int(Γ) ⊆ D.
fn analytic on D.
Now, (fn) converges to f uniformly.
Thus,

0 =

∫
Γ

fn(z)dz →
∫

Γ

f(z)dz = 0

∫
Γ

f(z)dz = 0

For any Jordan curve Γ in D.
By Morera’s Theorem, f is analytic on D.
Corollary:
A complex power series

∑∞
k=0 ck(z− z0)k = f(z) defines an analytic function

on its open disc of convergence D(z0;R).
Proof:
The partial sums fn(z) =

∑n
k=0 ck(z − z0)k are polynomials, hence analyticon

D(z0;R). (in fact on all of C)
Every z ∈ D is an interior point of a closed subdisc D(z0; ρ) ⊆ D(z0;R) on
which the convergence is uniform.
Remark:
The power series may also converge at some points on the boudnary of the
disc of convergence. But analyticity doesn’t even make sense since f(z) is not
defined on C \D
Differentiation of power series
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Theorem:
Let fn : Ω → C be a sequence of analytic functions on Ω. Suppose that (fn)
converges uniformly to f : Ω → C on each closed subdisc D in Ω. Then
the sequence f ′n : Ω → C (converges uniformly) to f ′ : Ω → C on each closed
subdisc D in Ω.
Proof:
Let D = D(z0; ε) ⊆ Ω, r > 0.
Let Γ = C(z0; r + d) be a circle of radius r + d centered at z0 such that

D ⊆ D(z0; r + d) ⊆ Ω

Let’s see why such a Γ exists.
To see this, let z ∈ ∂D.
Since Ω is open, there exists εz > 0 such that

D(z, εz) ⊆ Ω

{D(z;
εz
z

); z ∈ ∂D}

This is an open cover of ∂D, which is compact. So there exists a finite subcover.
That is, there exists z1, . . . , zN ∈ ∂D with εk = εzk such that

∂D ⊆
N⋃
k=1

D(zk,
1

2
εk)

Let d = minNk=1

(
ε1
2 , . . . ,

εN
2

)
We claim,

D(z0; r + d) ⊆ Ω

Let z ∈ D(z0, r + d) with |z − z0| ≥ r.
Let w be the point on ∂D where ray from z0 to z intersects.

|z − w| ≤ d

w ∈ ∂D ⇒ w ∈ D(zk,
εk
2 ) for some k.

|z − zk| ≤ |z − w|+ |w − zk| < d+
ε

2
≤ εk

2
+
εk
2

= εk

Hence, D(z0; r + d) ⊆ Ω.
Proves this claim.
Back to the Proof of the Theorem.
Let ε > 0, we need to show there exists N ∈ N such that n ≥ N then

|f ′n(ζ)− f ′(ζ)| < ε,∀ζ ∈ D

(This says (f ′n)→ f ′ uniformly on D.
Let ζ ∈ D.

88



Apply generalized Cauchy Integral Formula to the analytic function fn−f . We
get

f ′n(ζ)− f ′(ζ) =
1

2πi

∫
Γ

fn(z)− f(z)

(z − ζ)2
dz

For ζ ∈ D and z ∈ Γ, |z − ζ| ≥ d.

1

|z − ζ|2
≥ 1

d2
,∀z ∈ Γ, ζ ∈ D

.

∣∣∣∣∣fn(z)− f(z)

(z − ζ)
2

∣∣∣∣∣ ≤ |fn(z)− f(z)|
d2

By uniform convergence of (fn) to f on D, there exists N such that n ≥ N ,
then

|fn(z)− f(z)| < ε2πd2

Length(Γ)

By ML inequality, if n ≥ N .

|f ′n(ζ)− f ′(ζ)| ≥ 1

2π

(
ε2πd2

d2Length(Γ)

)
Length(Γ)

= ε

Corollary: Let f(z) =
∑∞
k=0 ck(z−z0)k be a complex power series with positive

radius of convergence. Then the complex power series

∞∑
k=0

kck(z − z0)k−1

has the same disc of convergence D(z0;R). and it converges to f ′(z) on D(z0;R).
i.e We can differentiate convergent power series term-by-term inside the open
disc of convergence D(z0;R).
Proof:
By previous result, f is analytic on D = D(z0;R). Hence, f ′ exists and is
analytic on D.

fn(z) =

n∑
k=0

ck(z − z0)k

f ′n(z) =

n∑
k=0

ckk(z − z0)k−1

Analytic on D.
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By previous theorem, f ′n converges uniformly to f ′ on any closed subdisc D of
D(z0;R).
But

lim
n→∞

f ′n(z) =

∞∑
k=0

kck(z − z0)k−1

The radius of convergence of
∑∞
k=0 kck(z − z0)k−1 is therefore at least R.

We need to show that it’s not larger.
Let z1 satisfy |z1 − z0| > R. We need to show

∑∞
k=0 kck(z − z0)k−1 does not

converge at z1.
Let k ∈ N such that k > |z1 − z0|, k

|z1−z0| > 1.

|ck(z − z0)k| < |kck(z − z0)k−1|,∀k sufficiently large

By Comparison Test, the second series does not converge.
Summary:
Let

∑∞
k=0 ck(z − z0)k be a complex power series with positive radius of conver-

gence.
D = D(z0;R)

is the open disc of convergence.

• The series converges absolutely and uniformly on any closed subdisc of
D.

Let f(z) =
∑∞
k=0 ck(z − z0)k for z ∈ D.

We showed f is analytic on D.

We also showed that on D, f ′(z) =
∑∞
k=0 kck(z − z0)k−1

Which has the same open disc of convergence.

Hence, convergent power series are analytic.

Next week: We show that analytic functions ”are” convergent power
series.
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